Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.amp import autocast | |
from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig | |
from peft import LoraConfig, get_peft_model | |
import os | |
hf_token = os.getenv("HF_TOKEN") | |
class BidirectionalLlamaAttention(nn.Module): | |
def __init__(self, original_layer, masking='unidirectional'): | |
super().__init__() | |
self.original = original_layer | |
self.masking = masking | |
self.q_proj = original_layer.q_proj | |
self.k_proj = original_layer.k_proj | |
self.v_proj = original_layer.v_proj | |
self.o_proj = original_layer.o_proj | |
self.head_dim = self.q_proj.out_features // original_layer.num_heads | |
self.num_heads = original_layer.num_heads | |
self.num_key_value_groups = original_layer.num_key_value_groups | |
self.attention_dropout = original_layer.attention_dropout | |
self.layer_idx = original_layer.layer_idx | |
self.scaling = original_layer.scaling | |
def forward(self, hidden_states, position_embeddings, attention_mask=None, past_key_value=None, cache_position=None, **kwargs): | |
bsz, seq_len, _ = hidden_states.size() | |
query_states = self._split_heads(self.q_proj(hidden_states)) | |
key_states = self._split_heads(self.k_proj(hidden_states)) | |
value_states = self._split_heads(self.v_proj(hidden_states)) | |
cos, sin = position_embeddings | |
query_states, key_states = self._apply_rotary(query_states, key_states, cos, sin) | |
if self.masking == 'bidirectional': | |
attn_mask = torch.ones((bsz, 1, seq_len, seq_len), device=hidden_states.device) | |
else: | |
attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device)).unsqueeze(0).unsqueeze(0) | |
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) * self.scaling | |
attn_weights = attn_weights + attn_mask.log() | |
attn_weights = F.softmax(attn_weights, dim=-1) | |
attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = self._merge_heads(attn_output) | |
return self.o_proj(attn_output), attn_weights | |
def _split_heads(self, x): | |
return x.view(x.size(0), x.size(1), self.num_heads, self.head_dim).transpose(1, 2) | |
def _merge_heads(self, x): | |
return x.transpose(1, 2).contiguous().view(x.size(0), -1, self.num_heads * self.head_dim) | |
def _apply_rotary(self, q, k, cos, sin): | |
cos = cos.unsqueeze(1) | |
sin = sin.unsqueeze(1) | |
q_rot = (q * cos) + (self._rotate_half(q) * sin) | |
k_rot = (k * cos) + (self._rotate_half(k) * sin) | |
return q_rot, k_rot | |
def _rotate_half(self, x): | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
class CustomTransformerConfig(PretrainedConfig): | |
def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.prediction_chunk = prediction_chunk | |
self.max_position_embeddings = max_position_embeddings | |
class CustomTransformerModel(PreTrainedModel): | |
config_class = CustomTransformerConfig | |
def __init__(self, config): | |
super().__init__(config) | |
self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, token=hf_token) | |
self.llama.resize_token_embeddings(config.vocab_size) | |
for i, layer in enumerate(self.llama.model.layers): | |
layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional') | |
for param in self.llama.parameters(): | |
param.requires_grad = False | |
for param in self.llama.lm_head.parameters(): | |
param.requires_grad = True | |
lora_config = LoraConfig( | |
r=256, | |
lora_alpha=256, | |
lora_dropout=0.0, | |
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], | |
bias="none", | |
task_type=None | |
) | |
self.llama = get_peft_model(self.llama, lora_config) | |
self.llama = self.llama.to(torch.float16) | |
def forward(self, input_ids, labels=None, **kwargs): | |
batch_size, seq_length = input_ids.shape | |
assert seq_length == self.config.prediction_chunk | |
with autocast("cuda", dtype=torch.float16): | |
outputs = self.llama(input_ids=input_ids, output_hidden_states=True, **kwargs) | |
logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, self.config.prediction_chunk, self.config.vocab_size) | |
loss = None | |
if labels is not None: | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} | |
def disable_dropout(model): | |
for name, module in model.named_modules(): | |
if isinstance(module, nn.Dropout): | |
setattr(model, name, nn.Identity()) | |
return model | |