|
import torch.nn as nn |
|
from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig |
|
from transformers.models.llama.modeling_llama import LlamaAttention |
|
from torch.amp import autocast |
|
from peft import LoraConfig, get_peft_model |
|
from typing import Optional, Tuple |
|
import torch |
|
import os |
|
|
|
|
|
|
|
hf_token = os.getenv("HF_TOKEN") |
|
|
|
class BidirectionalLlamaAttention(LlamaAttention): |
|
def __init__(self, original_layer, masking = 'unidirectional'): |
|
super().__init__(original_layer.config, layer_idx=original_layer.layer_idx) |
|
self.masking = masking |
|
|
|
|
|
self.q_proj.weight = original_layer.q_proj.weight |
|
self.k_proj.weight = original_layer.k_proj.weight |
|
self.v_proj.weight = original_layer.v_proj.weight |
|
self.o_proj.weight = original_layer.o_proj.weight |
|
|
|
def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
def eager_attention_forward(self, |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
key_states = self.repeat_kv(key, module.num_key_value_groups) |
|
value_states = self.repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
def rotate_half(self, x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (self.rotate_half(q) * sin) |
|
k_embed = (k * cos) + (self.rotate_half(k) * sin) |
|
|
|
return q_embed, k_embed |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[torch.Tensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
): |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
seq_len = hidden_states.shape[1] |
|
batch_size = hidden_states.shape[0] |
|
if self.masking == 'bidirectional': |
|
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool) |
|
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() |
|
elif self.masking == 'bidirectional_masked': |
|
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool) |
|
base_mask[:, 1:].fill_diagonal_(False) |
|
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() |
|
else: |
|
|
|
attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device, dtype=torch.bool)) |
|
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() |
|
|
|
|
|
|
|
attn_output, attn_weights = self.eager_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
def _split_heads(self, tensor, num_heads, attn_head_size): |
|
""" |
|
Splits hidden_size dim into attn_head_size and num_heads |
|
""" |
|
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) |
|
tensor = tensor.view(*new_shape) |
|
return tensor.permute(0, 2, 1, 3) |
|
|
|
def _merge_heads(self, tensor, num_heads, attn_head_size): |
|
""" |
|
Merges attn_head_size dim and num_attn_heads dim into hidden_size |
|
""" |
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) |
|
return tensor.view(new_shape) |
|
|
|
class CustomTransformerConfig(PretrainedConfig): |
|
def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs): |
|
super().__init__(**kwargs) |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_layers = num_layers |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.prediction_chunk = prediction_chunk |
|
self.max_position_embeddings = max_position_embeddings |
|
self.input_size = prediction_chunk |
|
|
|
class CustomTransformerModel(PreTrainedModel): |
|
config_class = CustomTransformerConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token = hf_token) |
|
|
|
self.llama.resize_token_embeddings(config.vocab_size) |
|
|
|
for i, layer in enumerate(self.llama.model.layers): |
|
layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional') |
|
|
|
|
|
for param in self.llama.parameters(): |
|
param.requires_grad = False |
|
|
|
for param in self.llama.lm_head.parameters(): |
|
param.requires_grad = True |
|
|
|
lora_config = LoraConfig( |
|
r=256, |
|
lora_alpha=256, |
|
lora_dropout=0.0, |
|
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], |
|
bias="none", |
|
task_type=None |
|
) |
|
|
|
self.llama = get_peft_model(self.llama, lora_config) |
|
self.llama.print_trainable_parameters() |
|
self.llama = self.llama.to(torch.float16) |
|
|
|
def forward(self, input_ids, labels=None, **kwargs): |
|
batch_size, seq_length = input_ids.shape |
|
assert seq_length == self.input_size, f"Expected input length input_size, got {seq_length}" |
|
|
|
with autocast("cuda", dtype=torch.float16): |
|
|
|
|
|
outputs = self.llama(input_ids, output_hidden_states=True, **kwargs) |
|
|
|
logits = outputs.logits[:,:,:self.config.vocab_size] |
|
|
|
|
|
logits = logits.view(batch_size, self.config.prediction_chunk, self.config.vocab_size) |
|
|
|
loss = None |
|
|
|
if labels is not None: |
|
assert labels.shape == (batch_size, self.input_size), f"Labels shape mismatch: expected (batch, input_size), got {labels.shape}" |
|
|
|
|
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
|
|
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
|
|
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} |
|
|
|
|
|
def disable_dropout(model): |
|
for name, module in model.named_modules(): |
|
if isinstance(module, nn.Dropout): |
|
setattr(model, name, nn.Identity()) |
|
return model |
|
|