Spaces:
Ruurd
/
Running on Zero

Ruurd commited on
Commit
6fba00f
·
1 Parent(s): feb3dce

Fixed timing

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -105,7 +105,8 @@ def diffusion_chat(question, noising, max_it, pause_length):
105
  )
106
  yield render_html("Iteration 0 (initial noise)",
107
  highlight_tokens(current_tokens[answer_start:], answer_start, just_noised_indices, color="red"))
108
- time.sleep(pause_length)
 
109
 
110
  last_tokens = []
111
  prev_decoded = []
@@ -113,9 +114,10 @@ def diffusion_chat(question, noising, max_it, pause_length):
113
  unmasked_mask = [False] * len(current_tokens)
114
 
115
  for i in range(max_it):
116
-
117
  generated_tokens, confidences = generate_diffusion_text(current_tokens, top_p, top_k)
118
  current_tokens = ori_input_tokens[:answer_start] + generated_tokens[answer_start:]
 
119
 
120
  # GREEN highlighting: compare to previous tokens
121
  new_decoded = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
@@ -125,6 +127,8 @@ def diffusion_chat(question, noising, max_it, pause_length):
125
  }
126
  prev_decoded = new_decoded
127
 
 
 
128
  yield render_html(f"Iteration {i+1}/{max_it} (after generation)",
129
  highlight_tokens(current_tokens[answer_start:], answer_start, diff_indices, color="green"))
130
  time.sleep(pause_length)
@@ -154,6 +158,7 @@ def diffusion_chat(question, noising, max_it, pause_length):
154
 
155
  yield render_html(f"Iteration {i+1}/{max_it} (before noising)",
156
  highlight_tokens(current_tokens[answer_start:], answer_start, just_noised_indices, color="red"))
 
157
 
158
  current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
159
 
 
105
  )
106
  yield render_html("Iteration 0 (initial noise)",
107
  highlight_tokens(current_tokens[answer_start:], answer_start, just_noised_indices, color="red"))
108
+
109
+ start = time.perf_counter()
110
 
111
  last_tokens = []
112
  prev_decoded = []
 
114
  unmasked_mask = [False] * len(current_tokens)
115
 
116
  for i in range(max_it):
117
+
118
  generated_tokens, confidences = generate_diffusion_text(current_tokens, top_p, top_k)
119
  current_tokens = ori_input_tokens[:answer_start] + generated_tokens[answer_start:]
120
+
121
 
122
  # GREEN highlighting: compare to previous tokens
123
  new_decoded = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
 
127
  }
128
  prev_decoded = new_decoded
129
 
130
+ time.sleep(max(pause_length - (time.perf_counter() - start), 0))
131
+
132
  yield render_html(f"Iteration {i+1}/{max_it} (after generation)",
133
  highlight_tokens(current_tokens[answer_start:], answer_start, diff_indices, color="green"))
134
  time.sleep(pause_length)
 
158
 
159
  yield render_html(f"Iteration {i+1}/{max_it} (before noising)",
160
  highlight_tokens(current_tokens[answer_start:], answer_start, just_noised_indices, color="red"))
161
+ start = time.perf_counter()
162
 
163
  current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
164