Add model config files
Browse files
app.py
CHANGED
@@ -17,6 +17,8 @@ from infer import (
|
|
17 |
generate_diffusion_text,
|
18 |
filter_logits
|
19 |
)
|
|
|
|
|
20 |
|
21 |
# Load .env only when running locally
|
22 |
if os.getenv("HF_TOKEN") is None:
|
|
|
17 |
generate_diffusion_text,
|
18 |
filter_logits
|
19 |
)
|
20 |
+
from models import CustomTransformerModel
|
21 |
+
from model_config import CustomTransformerConfig
|
22 |
|
23 |
# Load .env only when running locally
|
24 |
if os.getenv("HF_TOKEN") is None:
|
models.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.amp import autocast
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
from model_config import CustomTransformerConfig
|
7 |
+
|
8 |
+
class CustomTransformerModel(PreTrainedModel):
|
9 |
+
config_class = CustomTransformerConfig
|
10 |
+
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__(config)
|
13 |
+
|
14 |
+
def forward(self, input_ids, labels=None, **kwargs):
|
15 |
+
batch_size, seq_len = input_ids.shape
|
16 |
+
device = input_ids.device
|
17 |
+
masking_type = getattr(self.config, "masking_type", "bidirectional")
|
18 |
+
|
19 |
+
if masking_type == 'bidirectional':
|
20 |
+
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)
|
21 |
+
elif masking_type == 'bidirectional_masked':
|
22 |
+
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)
|
23 |
+
base_mask.fill_diagonal_(False)
|
24 |
+
elif masking_type == 'unidirectional':
|
25 |
+
base_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))
|
26 |
+
else:
|
27 |
+
raise ValueError(f"Unknown masking type: {masking_type}")
|
28 |
+
|
29 |
+
attention_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone()
|
30 |
+
attention_mask = attention_mask.to(dtype=torch.float32)
|
31 |
+
|
32 |
+
|
33 |
+
with autocast("mps", dtype=torch.float16):
|
34 |
+
outputs = self.llama(
|
35 |
+
input_ids,
|
36 |
+
attention_mask=attention_mask,
|
37 |
+
output_hidden_states=True,
|
38 |
+
use_cache=False,
|
39 |
+
**kwargs
|
40 |
+
)
|
41 |
+
|
42 |
+
logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, seq_len, self.config.vocab_size)
|
43 |
+
loss = None
|
44 |
+
|
45 |
+
if labels is not None:
|
46 |
+
assert labels.shape == (batch_size, seq_len)
|
47 |
+
loss_fct = nn.CrossEntropyLoss()
|
48 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
49 |
+
|
50 |
+
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
|