from transformers import PretrainedConfig class CustomTransformerConfig(PretrainedConfig): def __init__( self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, masking_type="bidirectional", **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_layers = num_layers self.num_heads = num_heads self.dropout = dropout self.prediction_chunk = prediction_chunk self.max_position_embeddings = max_position_embeddings self.input_size = prediction_chunk # alias self.masking_type = masking_type