Spaces:
Running
on
Zero
Running
on
Zero
from transformers import PretrainedConfig | |
class CustomTransformerConfig(PretrainedConfig): | |
def __init__( | |
self, | |
vocab_size=128256, | |
hidden_size=4096, | |
num_layers=32, | |
num_heads=32, | |
prediction_chunk=256, | |
dropout=0, | |
max_position_embeddings=4096, | |
masking_type="bidirectional", | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.prediction_chunk = prediction_chunk | |
self.max_position_embeddings = max_position_embeddings | |
self.input_size = prediction_chunk # alias | |
self.masking_type = masking_type | |