Spaces:
Running
on
Zero
Running
on
Zero
Smooth confidence guided noising
Browse files
app.py
CHANGED
@@ -82,9 +82,13 @@ def confidence_guided_noising(input_ids, answer_start, confidences, threshold, e
|
|
82 |
if num_to_noise == 0:
|
83 |
return noised
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
|
89 |
indices = rng.choice(
|
90 |
np.arange(answer_start, len(input_ids)),
|
@@ -104,6 +108,7 @@ def confidence_guided_noising(input_ids, answer_start, confidences, threshold, e
|
|
104 |
return noised
|
105 |
|
106 |
|
|
|
107 |
@spaces.GPU
|
108 |
def generate_diffusion_text(input_ids, answer_start):
|
109 |
with torch.no_grad():
|
|
|
82 |
if num_to_noise == 0:
|
83 |
return noised
|
84 |
|
85 |
+
# Avoid zero-probability weights
|
86 |
+
raw_weights = 1.0 - np.array(confidences[answer_start:])
|
87 |
+
raw_weights = np.clip(raw_weights, 1e-6, None) # prevent exact 0s
|
88 |
+
weights = raw_weights / raw_weights.sum()
|
89 |
+
|
90 |
+
if num_to_noise > len(weights):
|
91 |
+
num_to_noise = len(weights) # safety: can’t sample more than available
|
92 |
|
93 |
indices = rng.choice(
|
94 |
np.arange(answer_start, len(input_ids)),
|
|
|
108 |
return noised
|
109 |
|
110 |
|
111 |
+
|
112 |
@spaces.GPU
|
113 |
def generate_diffusion_text(input_ids, answer_start):
|
114 |
with torch.no_grad():
|