import gradio as gr import torch import numpy as np import json import time from transformers import AutoTokenizer import os import importlib import os from huggingface_hub import hf_hub_download import spaces from dotenv import load_dotenv from infer import ( load_trained_model, find_answer_start, get_noising_schedule, noisify_answer, generate_diffusion_text, filter_logits, confidence_guided_noising, noisify_answer_without_remasking ) from models import CustomTransformerModel from model_config import CustomTransformerConfig # Load .env only when running locally if os.getenv("HF_TOKEN") is None: load_dotenv() hf_token = os.getenv("HF_TOKEN") if hf_token is None: raise ValueError("HF_TOKEN is not set") rng = np.random.default_rng() @spaces.GPU def generate_diffusion_text(input_ids, top_p, top_k, eos_bias=0.0): with torch.no_grad(): input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device) with torch.cuda.amp.autocast(dtype=torch.float16): logits = model(input_ids=input_tensor)["logits"] # Apply eos_bias if eos_bias != 0.0: logits[0, :, eos_token_id] += eos_bias logits = filter_logits(logits, top_k=top_p, top_p=top_k) logits = logits.clamp(min=-1e8, max=1e4) probs = torch.nn.functional.softmax(logits, dim=-1)[0] probs = torch.clamp(probs, min=1e-8, max=1.0) assert torch.all(torch.isfinite(probs)), "Non-finite values in probs!" assert (probs >= 0).all(), "Negative probs!" sampled = torch.multinomial(probs, num_samples=1).squeeze(-1).tolist() # Extract confidence of selected tokens conf = probs[range(len(sampled)), sampled].cpu().numpy() return sampled, conf def format_chat_prompt(question): return ( "<|begin_of_text|>\n" "<|start_header_id|>system<|end_header_id|>\n" "You are a helpful assistant.\n" "<|start_header_id|>user<|end_header_id|>\n" f"{question}\n" "<|start_header_id|>assistant<|end_header_id|>\n" ) def render_html(label, text): return f"{label}
{text}
" def highlight_tokens(token_ids, answer_start, changed_indices, color): tokens = tokenizer.convert_ids_to_tokens(token_ids) highlighted = [] for j, tok in enumerate(tokens): if tokenizer.convert_tokens_to_ids(tok) == eos_token_id: continue tok_str = tokenizer.convert_tokens_to_string([tok]) if (answer_start + j) in changed_indices: highlighted.append(f'{tok_str}') else: highlighted.append(tok_str) return "".join(highlighted) def diffusion_chat(question, max_it, pause_length, eos_bias, sharpness, clustering, noise_start, use_confidence_noising, use_permanent_unmasking, noise_clipping, top_p, top_k): eos_bias = -eos_bias if question.strip() == "": question = "What do you know about the city of Amsterdam?" prompt = format_chat_prompt(question) input_ids = tokenizer.encode(prompt, add_special_tokens=False) answer_start = find_answer_start(input_ids, assistant_marker_ids) if answer_start is None: yield render_html("Error", "Could not find Assistant marker in input.") return input_ids = (input_ids + [mask_token_id] * (256 - len(input_ids)))[:256] ori_input_tokens = input_ids # Initial noising current_tokens, just_noised_indices = noisify_answer( input_ids, answer_start, tokenizer, threshold=1.0, clustering=clustering, noise_start=1.0 ) yield render_html("Iteration 0 (initial noise)", highlight_tokens(current_tokens[answer_start:], answer_start, just_noised_indices, color="red")) time.sleep(pause_length) last_tokens = [] prev_decoded = [] unmasked_mask = [False] * len(current_tokens) for i in range(max_it): generated_tokens, confidences = generate_diffusion_text(current_tokens, top_p, top_k, eos_bias = eos_bias) current_tokens = ori_input_tokens[:answer_start] + generated_tokens[answer_start:] # GREEN highlighting: compare to previous tokens new_decoded = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:]) diff_indices = { answer_start + j for j, tok in enumerate(new_decoded) if j >= len(prev_decoded) or tok != prev_decoded[j] } prev_decoded = new_decoded yield render_html(f"Iteration {i+1}/{max_it} (after generation)", highlight_tokens(current_tokens[answer_start:], answer_start, diff_indices, color="green")) time.sleep(pause_length) # Early stopping last_tokens.append(current_tokens) if len(last_tokens) > 3: last_tokens.pop(0) if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]: yield render_html("Stopped early", f"After {i+1} iterations.") break # NOISING if i < max_it-1: threshold = get_noising_schedule(i, max_it, sharpness=sharpness) if use_confidence_noising: noised_answer, just_noised_indices = confidence_guided_noising( current_tokens, answer_start, tokenizer, confidences, noise_clipping, threshold=threshold, noise_start=noise_start ) elif use_permanent_unmasking: noised_answer, just_noised_indices = noisify_answer_without_remasking( current_tokens, answer_start, tokenizer, threshold=threshold, noise_start=noise_start, unmasked_mask=unmasked_mask ) else: noised_answer, just_noised_indices = noisify_answer( current_tokens, answer_start, tokenizer, threshold=threshold, clustering=clustering, noise_start=noise_start ) for idx in range(answer_start, len(current_tokens)): if noised_answer[idx] != mask_token_id: unmasked_mask[idx] = True yield render_html(f"Iteration {i+1}/{max_it} (before noising)", highlight_tokens(current_tokens[answer_start:], answer_start, just_noised_indices, color="red")) current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:] # Final output answer_ids = current_tokens[answer_start:] try: final_ids = answer_ids[:answer_ids.index(eos_token_id)] except ValueError: final_ids = answer_ids final_output = tokenizer.decode(final_ids, skip_special_tokens=True) yield render_html(f"Final Output ({len(final_ids)} tokens after {i+1} iterations)", final_output) def is_running_on_spaces(): return os.getenv("SPACE_ID") is not None print("Loading model...") if is_running_on_spaces(): # Load from Hugging Face Hub ckpt_path = hf_hub_download( repo_id="ruurd/tini_model", filename="diffusion-model-8B.pth", token=os.getenv("HF_TOKEN") ) else: # Load from local path ckpt_path = "diffusion-model-8B.pth" # change to your actual local path model, tokenizer = load_trained_model(checkpoint_path=ckpt_path) print("✅ Model loaded.") vocab_size = len(tokenizer) eos_token_id = tokenizer.eos_token_id mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0] assistant_marker_ids = tokenizer.encode("<|start_header_id|>assistant<|end_header_id|>", add_special_tokens=False) demo = gr.Interface( fn=diffusion_chat, inputs=[ gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of Amsterdam?"), gr.Slider(1, 512, value=64, step=1, label="Number of iterarions: ↑ = more iterations"), gr.Slider(0.01, 5, value=0.01, step=0.01, label="Pause between iteration ↑ = longer pause"), gr.Slider(-5.0, 5.0, value=0.0, step=0.1, label="Generation length: ↑ = more output tokens by decreasing eos token probability"), gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Noise decay sharpness: ↓ = more noise in later iterations"), gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Clustering: ↑ = more clustered noising"), gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="Noise start fraction: ↑ = more noise"), gr.Checkbox(value=False, label="Use confidence-guided noising"), gr.Checkbox(value=False, label="Use permanent unmasking"), gr.Slider(0.01, 1.0, value=0.01, step=0.01, label="Noise clipping: ↓ = more confidence guidance"), gr.Slider(1, 1000, value = 3, step = 1, label = "Top-p: ↑ = more random answers"), gr.Slider(0.0, 1.0, value = 1.0, step = 0.01, label = "Top-k: ↑ = more random answers") ], outputs=[gr.HTML(label="Diffusion Output")], title="Diffusion Language Model Chat", theme="default", description="This interface runs a diffusion-based language model to generate answers progressively." ) demo.launch(share=True, allowed_paths=["."], ssr_mode=False)