import torch from PIL import Image, ImageDraw from pathlib import Path from yolov5.models.experimental import attempt_load from yolov5.utils.general import non_max_suppression, scale_coords from yolov5.utils.torch_utils import select_device # Set the device device = select_device('') # Load YOLOv5 model weights_path = 'model/yolov5n6_RGB_D2304-v1_9C.pt' model = attempt_load(weights_path, map_location=device) stride = int(model.stride.max()) # model stride # Set image size img_size = 640 # Load the single image image_path = 'path/to/single/image.jpg' img0 = Image.open(image_path) img = img0.convert('RGB') # Inference img = torch.from_numpy(img).to(device) img = img.float() / 255.0 # 0-255 to 0.0-1.0 img = img.unsqueeze(0) # add batch dimension img = img.permute(0, 3, 1, 2) # BGR to RGB, to 4D tensor (NCHW) # Inference pred = model(img)[0] # Non-maximum suppression pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)[0] # Draw bounding boxes on the image for det in pred: det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.size).round() for *xyxy, conf, cls in det: xyxy = [int(x) for x in xyxy] label = f'{model.names[int(cls)]} {conf:.2f}' img0 = ImageDraw.Draw(img0) img0.rectangle(xyxy, outline='red', width=3) img0.text((xyxy[0], xyxy[1]), label, fill='red') # Save the result output_path = 'output/result.jpg' img0.save(output_path) print(f"Inference completed. Result saved at {output_path}")