File size: 16,860 Bytes
18e4106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import time
import copy
import logging
import base64
import cv2
import numpy as np
from io import BytesIO
from PIL import Image

from paddleocr import PaddleOCR
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import check_and_read, alpha_to_color, binarize_img
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image, get_minarea_rect_crop
from pdf_extract_kit.registry import MODEL_REGISTRY
logger = get_logger()

def img_decode(content: bytes):
    np_arr = np.frombuffer(content, dtype=np.uint8)
    return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)

def check_img(img):
    if isinstance(img, bytes):
        img = img_decode(img)
    if isinstance(img, str):
        image_file = img
        img, flag_gif, flag_pdf = check_and_read(image_file)
        if not flag_gif and not flag_pdf:
            with open(image_file, 'rb') as f:
                img_str = f.read()
                img = img_decode(img_str)
            if img is None:
                try:
                    buf = BytesIO()
                    image = BytesIO(img_str)
                    im = Image.open(image)
                    rgb = im.convert('RGB')
                    rgb.save(buf, 'jpeg')
                    buf.seek(0)
                    image_bytes = buf.read()
                    data_base64 = str(base64.b64encode(image_bytes),
                                      encoding="utf-8")
                    image_decode = base64.b64decode(data_base64)
                    img_array = np.frombuffer(image_decode, np.uint8)
                    img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
                except:
                    logger.error("error in loading image:{}".format(image_file))
                    return None
        if img is None:
            logger.error("error in loading image:{}".format(image_file))
            return None
    if isinstance(img, np.ndarray) and len(img.shape) == 2:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    if isinstance(img, Image.Image):
        img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
    return img

def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        for j in range(i, -1, -1):
            if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
                    (_boxes[j + 1][0][0] < _boxes[j][0][0]):
                tmp = _boxes[j]
                _boxes[j] = _boxes[j + 1]
                _boxes[j + 1] = tmp
            else:
                break
    return _boxes


def __is_overlaps_y_exceeds_threshold(bbox1, bbox2, overlap_ratio_threshold=0.8):
    """Check if two bounding boxes overlap on the y-axis, and if the height of the overlapping region exceeds 80% of the height of the shorter bounding box."""
    _, y0_1, _, y1_1 = bbox1
    _, y0_2, _, y1_2 = bbox2

    overlap = max(0, min(y1_1, y1_2) - max(y0_1, y0_2))
    height1, height2 = y1_1 - y0_1, y1_2 - y0_2
    max_height = max(height1, height2)
    min_height = min(height1, height2)

    return (overlap / min_height) > overlap_ratio_threshold


def bbox_to_points(bbox):
    """ change bbox(shape: N * 4) to polygon(shape: N * 8) """
    x0, y0, x1, y1 = bbox
    return np.array([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]).astype('float32')


def points_to_bbox(points):
    """ change polygon(shape: N * 8) to bbox(shape: N * 4) """
    x0, y0 = points[0]
    x1, _ = points[1]
    _, y1 = points[2]
    return [x0, y0, x1, y1]


def merge_intervals(intervals):
    # Sort the intervals based on the start value
    intervals.sort(key=lambda x: x[0])

    merged = []
    for interval in intervals:
        # If the list of merged intervals is empty or if the current
        # interval does not overlap with the previous, simply append it.
        if not merged or merged[-1][1] < interval[0]:
            merged.append(interval)
        else:
            # Otherwise, there is overlap, so we merge the current and previous intervals.
            merged[-1][1] = max(merged[-1][1], interval[1])

    return merged


def remove_intervals(original, masks):
    # Merge all mask intervals
    merged_masks = merge_intervals(masks)

    result = []
    original_start, original_end = original

    for mask in merged_masks:
        mask_start, mask_end = mask

        # If the mask starts after the original range, ignore it
        if mask_start > original_end:
            continue

        # If the mask ends before the original range starts, ignore it
        if mask_end < original_start:
            continue

        # Remove the masked part from the original range
        if original_start < mask_start:
            result.append([original_start, mask_start - 1])

        original_start = max(mask_end + 1, original_start)

    # Add the remaining part of the original range, if any
    if original_start <= original_end:
        result.append([original_start, original_end])

    return result


def update_det_boxes(dt_boxes, mfd_res):
    new_dt_boxes = []
    for text_box in dt_boxes:
        text_bbox = points_to_bbox(text_box)
        masks_list = []
        for mf_box in mfd_res:
            mf_bbox = mf_box['bbox']
            if __is_overlaps_y_exceeds_threshold(text_bbox, mf_bbox):
                masks_list.append([mf_bbox[0], mf_bbox[2]])
        text_x_range = [text_bbox[0], text_bbox[2]]
        text_remove_mask_range = remove_intervals(text_x_range, masks_list)
        temp_dt_box = []
        for text_remove_mask in text_remove_mask_range:
            temp_dt_box.append(bbox_to_points([text_remove_mask[0], text_bbox[1], text_remove_mask[1], text_bbox[3]]))
        if len(temp_dt_box) > 0:
            new_dt_boxes.extend(temp_dt_box)
    return new_dt_boxes


def merge_spans_to_line(spans):
    """
    Merge given spans into lines. Spans are considered based on their position in the document.
    If spans overlap sufficiently on the Y-axis, they are merged into the same line; otherwise, a new line is started.

    Parameters:
    spans (list): A list of spans, where each span is a dictionary containing at least the key 'bbox',
                  which itself is a list of four integers representing the bounding box:
                  [x0, y0, x1, y1], where (x0, y0) is the top-left corner and (x1, y1) is the bottom-right corner.

    Returns:
    list: A list of lines, where each line is a list of spans.
    """
    # Return an empty list if the spans list is empty
    if len(spans) == 0:
        return []
    else:
        # Sort spans by the Y0 coordinate
        spans.sort(key=lambda span: span['bbox'][1])

        lines = []
        current_line = [spans[0]]
        for span in spans[1:]:
            # If the current span overlaps with the last span in the current line on the Y-axis, add it to the current line
            if __is_overlaps_y_exceeds_threshold(span['bbox'], current_line[-1]['bbox']):
                current_line.append(span)
            else:
                # Otherwise, start a new line
                lines.append(current_line)
                current_line = [span]

        # Add the last line if it exists
        if current_line:
            lines.append(current_line)

        return lines


def merge_overlapping_spans(spans):
    """
    Merges overlapping spans on the same line.

    :param spans: A list of span coordinates [(x1, y1, x2, y2), ...]
    :return: A list of merged spans
    """
    # Return an empty list if the input spans list is empty
    if not spans:
        return []

    # Sort spans by their starting x-coordinate
    spans.sort(key=lambda x: x[0])

    # Initialize the list of merged spans
    merged = []
    for span in spans:
        # Unpack span coordinates
        x1, y1, x2, y2 = span
        # If the merged list is empty or there's no horizontal overlap, add the span directly
        if not merged or merged[-1][2] < x1:
            merged.append(span)
        else:
            # If there is horizontal overlap, merge the current span with the previous one
            last_span = merged.pop()
            # Update the merged span's top-left corner to the smaller (x1, y1) and bottom-right to the larger (x2, y2)
            x1 = min(last_span[0], x1)
            y1 = min(last_span[1], y1)
            x2 = max(last_span[2], x2)
            y2 = max(last_span[3], y2)
            # Add the merged span back to the list
            merged.append((x1, y1, x2, y2))

    # Return the list of merged spans
    return merged


def merge_det_boxes(dt_boxes):
    """
    Merge detection boxes.

    This function takes a list of detected bounding boxes, each represented by four corner points.
    The goal is to merge these bounding boxes into larger text regions.

    Parameters:
    dt_boxes (list): A list containing multiple text detection boxes, where each box is defined by four corner points.

    Returns:
    list: A list containing the merged text regions, where each region is represented by four corner points.
    """
    # Convert the detection boxes into a dictionary format with bounding boxes and type
    dt_boxes_dict_list = []
    for text_box in dt_boxes:
        text_bbox = points_to_bbox(text_box)
        text_box_dict = {
            'bbox': text_bbox,
        }
        dt_boxes_dict_list.append(text_box_dict)

    # Merge adjacent text regions into lines
    lines = merge_spans_to_line(dt_boxes_dict_list)

    # Initialize a new list for storing the merged text regions
    new_dt_boxes = []
    for line in lines:
        line_bbox_list = []
        for span in line:
            line_bbox_list.append(span['bbox'])

        # Merge overlapping text regions within the same line
        merged_spans = merge_overlapping_spans(line_bbox_list)

        # Convert the merged text regions back to point format and add them to the new detection box list
        for span in merged_spans:
            new_dt_boxes.append(bbox_to_points(span))

    return new_dt_boxes

@MODEL_REGISTRY.register('ocr_ppocr')
class ModifiedPaddleOCR(PaddleOCR):
    def __init__(self, config):
        super().__init__(**config)
        
    def predict(self, img, **kwargs):
        ppocr_res = self.ocr(img, **kwargs)[0]
        ocr_res = []
        for box_ocr_res in ppocr_res:
            p1, p2, p3, p4 = box_ocr_res[0]
            text, score = box_ocr_res[1]
            ocr_res.append({
                "category_type": "text",
                'poly': p1 + p2 + p3 + p4,
                'score': round(score, 2),
                'text': text,
            })
        return ocr_res
        
    def ocr(self, img, det=True, rec=True, cls=True, bin=False, inv=False, mfd_res=None, alpha_color=(255, 255, 255)):
        """
        OCR with PaddleOCR
        args:
            img: img for OCR, support ndarray, img_path and list or ndarray
            det: use text detection or not. If False, only rec will be exec. Default is True
            rec: use text recognition or not. If False, only det will be exec. Default is True
            cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
            bin: binarize image to black and white. Default is False.
            inv: invert image colors. Default is False.
            alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
        """
        assert isinstance(img, (np.ndarray, list, str, bytes, Image.Image))
        if isinstance(img, list) and det == True:
            logger.error('When input a list of images, det must be false')
            exit(0)
        if cls == True and self.use_angle_cls == False:
            logger.warning(
                'Since the angle classifier is not initialized, it will not be used during the forward process'
            )

        img = check_img(img)
        # for infer pdf file
        if isinstance(img, list):
            if self.page_num > len(img) or self.page_num == 0:
                self.page_num = len(img)
            imgs = img[:self.page_num]
        else:
            imgs = [img]

        def preprocess_image(_image):
            _image = alpha_to_color(_image, alpha_color)
            if inv:
                _image = cv2.bitwise_not(_image)
            if bin:
                _image = binarize_img(_image)
            return _image

        if det and rec:
            ocr_res = []
            for idx, img in enumerate(imgs):
                img = preprocess_image(img)
                dt_boxes, rec_res, _ = self.__call__(img, cls, mfd_res=mfd_res)
                if not dt_boxes and not rec_res:
                    ocr_res.append(None)
                    continue
                tmp_res = [[box.tolist(), res]
                           for box, res in zip(dt_boxes, rec_res)]
                ocr_res.append(tmp_res)
            return ocr_res
        elif det and not rec:
            ocr_res = []
            for idx, img in enumerate(imgs):
                img = preprocess_image(img)
                dt_boxes, elapse = self.text_detector(img)
                if not dt_boxes:
                    ocr_res.append(None)
                    continue
                tmp_res = [box.tolist() for box in dt_boxes]
                ocr_res.append(tmp_res)
            return ocr_res
        else:
            ocr_res = []
            cls_res = []
            for idx, img in enumerate(imgs):
                if not isinstance(img, list):
                    img = preprocess_image(img)
                    img = [img]
                if self.use_angle_cls and cls:
                    img, cls_res_tmp, elapse = self.text_classifier(img)
                    if not rec:
                        cls_res.append(cls_res_tmp)
                rec_res, elapse = self.text_recognizer(img)
                ocr_res.append(rec_res)
            if not rec:
                return cls_res
            return ocr_res
        
    def __call__(self, img, cls=True, mfd_res=None):
        time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}

        if img is None:
            logger.debug("no valid image provided")
            return None, None, time_dict

        start = time.time()
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
        time_dict['det'] = elapse

        if dt_boxes is None:
            logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
            end = time.time()
            time_dict['all'] = end - start
            return None, None, time_dict
        else:
            logger.debug("dt_boxes num : {}, elapsed : {}".format(
                len(dt_boxes), elapse))
        img_crop_list = []

        dt_boxes = sorted_boxes(dt_boxes)

        dt_boxes = merge_det_boxes(dt_boxes)

        if mfd_res:
            bef = time.time()
            dt_boxes = update_det_boxes(dt_boxes, mfd_res)
            aft = time.time()
            logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format(
                len(dt_boxes), aft-bef))

        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            if self.args.det_box_type == "quad":
                img_crop = get_rotate_crop_image(ori_im, tmp_box)
            else:
                img_crop = get_minarea_rect_crop(ori_im, tmp_box)
            img_crop_list.append(img_crop)
        if self.use_angle_cls and cls:
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
            time_dict['cls'] = elapse
            logger.debug("cls num  : {}, elapsed : {}".format(
                len(img_crop_list), elapse))

        rec_res, elapse = self.text_recognizer(img_crop_list)
        time_dict['rec'] = elapse
        logger.debug("rec_res num  : {}, elapsed : {}".format(
            len(rec_res), elapse))
        if self.args.save_crop_res:
            self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
                                   rec_res)
        filter_boxes, filter_rec_res = [], []
        for box, rec_result in zip(dt_boxes, rec_res):
            text, score = rec_result
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_result)
        end = time.time()
        time_dict['all'] = end - start
        return filter_boxes, filter_rec_res, time_dict