|
import os |
|
import cv2 |
|
import torch |
|
from torch.utils.data import DataLoader, Dataset |
|
from ultralytics import YOLO |
|
from pdf_extract_kit.registry import MODEL_REGISTRY |
|
from pdf_extract_kit.utils.visualization import visualize_bbox |
|
from pdf_extract_kit.dataset.dataset import ImageDataset |
|
import torchvision.transforms as transforms |
|
|
|
|
|
@MODEL_REGISTRY.register('formula_detection_yolo') |
|
class FormulaDetectionYOLO: |
|
def __init__(self, config): |
|
""" |
|
Initialize the FormulaDetectionYOLO class. |
|
|
|
Args: |
|
config (dict): Configuration dictionary containing model parameters. |
|
""" |
|
|
|
self.id_to_names = { |
|
0: 'inline', |
|
1: 'isolated' |
|
} |
|
|
|
|
|
self.model = YOLO(config['model_path']) |
|
|
|
|
|
self.img_size = config.get('img_size', 1280) |
|
self.pdf_dpi = config.get('pdf_dpi', 200) |
|
self.conf_thres = config.get('conf_thres', 0.25) |
|
self.iou_thres = config.get('iou_thres', 0.45) |
|
self.visualize = config.get('visualize', False) |
|
self.device = config.get('device', 'cuda' if torch.cuda.is_available() else 'cpu') |
|
self.batch_size = config.get('batch_size', 1) |
|
|
|
def predict(self, images, result_path, image_ids=None): |
|
""" |
|
Predict formulas in images. |
|
|
|
Args: |
|
images (list): List of images to be predicted. |
|
result_path (str): Path to save the prediction results. |
|
image_ids (list, optional): List of image IDs corresponding to the images. |
|
|
|
Returns: |
|
list: List of prediction results. |
|
""" |
|
results = [] |
|
for idx, image in enumerate(images): |
|
result = self.model.predict(image, imgsz=self.img_size, conf=self.conf_thres, iou=self.iou_thres, verbose=False)[0] |
|
if self.visualize: |
|
if not os.path.exists(result_path): |
|
os.makedirs(result_path) |
|
boxes = result.__dict__['boxes'].xyxy |
|
classes = result.__dict__['boxes'].cls |
|
scores = result.__dict__['boxes'].conf |
|
|
|
vis_result = visualize_bbox(image, boxes, classes, scores, self.id_to_names) |
|
|
|
|
|
if image_ids: |
|
base_name = image_ids[idx] |
|
else: |
|
|
|
base_name = os.path.splitext(os.path.basename(image))[0] |
|
|
|
|
|
result_name = f"{base_name}_MFD.png" |
|
|
|
|
|
cv2.imwrite(os.path.join(result_path, result_name), vis_result) |
|
results.append(result) |
|
return results |