File size: 9,872 Bytes
96b6673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import numpy as np
import string
import re
import collections
import torch
import nltk
def one_paragraph(text):
paras = text.lstrip('\n').split('\n\n')
if not paras:
return ''
else:
return paras[0].rstrip('\n')
def strong_one_paragraph(text):
paras = text.lstrip('\n').split('\n')
if not paras:
return ''
else:
return paras[0].rstrip('\n')
def compute_str_em(data):
"""Compute STR-EM metric (only for ASQA)
Args:
data: requires field `qa_pairs/short_answers` and `output`
Returns:
STR-EM and STR-EM-HIT ()
"""
if 'qa_pairs' not in data[0] or data[0]['qa_pairs'] is None:
return 0
acc = []
hit = []
for item in data:
loc_acc = []
for qa_pair in item['qa_pairs']:
loc_acc.append(exact_presence(qa_pair['short_answers'], item["output"]))
acc.append(np.mean(loc_acc))
hit.append(int(np.mean(loc_acc) == 1))
return 100 * np.mean(acc)
return 100 * np.mean(acc), 100 * np.mean(hit)
def average(func):
def avg_func(dataset):
print(len(dataset))
results = [func(*data) for data in dataset] if dataset else []
if results:
return np.mean(np.array(results), axis=0).tolist()
else:
return None
return avg_func
def normalize_answer(s):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def compute_f1(a_gold, a_pred):
"""Compute F1 score between two strings."""
def _get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
gold_toks = _get_tokens(a_gold)
pred_toks = _get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def compute_exact(a_gold, a_pred):
"""Check whether two strings are equal up to normalization."""
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def exact_presence(short_answers, context):
"""Verify if any of the answers is present in the given context.
Args:
short_answers: list of short answers to look for in the context
context: a paragraph to search for short answers
Returns:
true if any of the short answers is present in the context
"""
n_short_answers = [normalize_answer(sa) for sa in short_answers]
n_context = normalize_answer(context)
for ans in n_short_answers:
if ans in n_context:
return True
return False
def output_begin_with(word):
def f(self) -> bool:
return self.last_message.strip().lower()[:len(word)] == word
return f
def output_end_with(word):
def f(self) -> bool:
return strong_one_paragraph(self.last_message.strip())[-len(word):] == word
return f
def make_as(datakey):
def f(passage):
return {datakey:passage}
return f
def cut_and_make_as(datakey):
def f(passage):
return {datakey:one_paragraph(passage)}
return f
def remove_citations(sent):
return re.sub(r"{\d+", "", re.sub(r" {\d+", "", sent)).replace(" |", "").replace("}", "").replace("{", "")
def remove_citations(sent):
return re.sub(r"\[\d+", "", re.sub(r" \[\d+", "", sent)).replace(" |", "").replace("]", "")
def match_document(ref_mark, output_ref_span):
ref = set()
ref_span = []
for num in ref_mark:
ref_str = str(num)
if ref_str in output_ref_span:
ref_parts = output_ref_span[ref_str].split("[")
if len(ref_parts) > 1:
ref_id_parts = ref_parts[1].split("]")
if len(ref_id_parts) > 0:
ref_id = ref_id_parts[0].strip()
if ref_id.isdigit():
ref.add(int(ref_id)) # 添加Document id
ref_span_parts = output_ref_span[ref_str].split(":",1)#第一个冒号后面的片段
if len(ref_span_parts) > 1:
ref_span.append(ref_span_parts[1].strip()) # 添加后面的句子片段
else:
ref_span.append('')
return list(ref), ref_span
def get_max_memory():
"""Get the maximum memory available for the current GPU for loading models."""
free_in_GB = int(torch.cuda.mem_get_info()[0]/1024**3)
max_memory = f'{free_in_GB-6}GB'
n_gpus = torch.cuda.device_count()
max_memory = {i: max_memory for i in range(n_gpus)}
return max_memory
def each_make_as(key):
def function(output):
sents = nltk.sent_tokenize(one_paragraph(output))
if len(sents)>3:
sents = sents[:3]
return [make_as(key)(sent) for sent in sents]
return function
def each_par_make_as(key):
def function(output):
sents = one_paragraph(output).split('\n')
if len(sents)>3:
sents = sents[:3]
return [make_as(key)(sent) for sent in sents]
return function
def sentence(key):
def function(output):
sents = nltk.sent_tokenize(one_paragraph(output))
for sent in sents:
refs = re.findall(r'\[\d+\]', sent)
if refs:
return make_as(key)(sent)
return make_as(key)('')
return function
def sentences(key):
def function(output):
sents = nltk.sent_tokenize(one_paragraph(output))
return [make_as(key)(sent) for sent in sents][:1]
return function
def three_sentences(key):
def function(output):
sents = nltk.sent_tokenize(one_paragraph(output))
return [make_as(key)(sent) for sent in sents][:3]
return function
def first_sentence(text):
sents = nltk.sent_tokenize(one_paragraph(text))
for sent in sents:
return sent
return ''
def flatten_dict(d, parent_key='', sep='_'):
items = []
for k, v in d.items():
new_key = f'{parent_key}{sep}{k}' if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
import re
from bs4 import BeautifulSoup
def parse_html_prompt(input_str):
soup = BeautifulSoup(input_str, "html.parser")
# 处理 <p></p> 内的内容
p_content = soup.find("p").decode_contents().replace("<br>", "\n")
p_content = re.sub(r'<span[^>]*>(.*?)</span>', r'<\1>', p_content)
template = p_content.strip().replace(' <br/>', '').replace(' ', '').replace('<br/>', '')
# 解析 component-item
components = {}
for item in soup.find_all("div", class_="component-item"):
key_span = item.find("div", class_="component-key").find("span")
key = key_span.get_text(strip=True) if key_span else ""
value_div = item.find("div", class_="component-value")
value_content = value_div.decode_contents()
value_content = re.sub(r'<span[^>]*>(.*?)</span>', r'{\1}', value_content)
components[key] = value_content.strip().replace(' <br/>', '').replace('<br/>', '')
# 解析 self-info-item
self_prompt = {}
for item in soup.find_all("div", class_="self-info-item"):
key_span = item.find("div", class_="component-key").find("span")
key = key_span.get_text(strip=True) if key_span else ""
value_div = item.find("div", class_="component-value")
value = value_div.get_text(strip=True) if value_div else ""
self_prompt[key] = value.replace(' <br/>', '').replace('<br/>', '')
return {
'template': template,
'components': components,
'self_prompt': self_prompt
}
def parse_html_destination(input_str):
soup = BeautifulSoup(input_str, "html.parser")
destination = soup.find("destination").get_text(strip=True)
prompt_key = soup.find("prompt_key").get_text(strip=True)
return destination, prompt_key
def parse_html_new_model(input_str):
soup = BeautifulSoup(input_str, "html.parser")
model_type = soup.find("model_type").get_text(strip=True)
model_name = soup.find("model").get_text(strip=True)
key = soup.find("prompt_key").get_text(strip=True)
return model_type, model_name, key
def parse_delete_destination(input_str):
soup = BeautifulSoup(input_str, "html.parser")
destination = soup.find("deletedestination").get_text(strip=True)
return destination
def parse_html_header(input_str):
soup = BeautifulSoup(input_str, "html.parser")
header = soup.find("to_head").get_text(strip=True)
return header
def parse_html_config(info):
config = ''
if 'class="component-value"' in info:
func = parse_html_prompt
config = 'prompt'
elif '</destination>' in info:
func = parse_html_destination
config = 'destination'
elif '<model_type>' in info:
func = parse_html_new_model
config = 'new_model'
elif 'deletedestination' in info:
config = 'delete_destination'
func = parse_delete_destination
elif 'to_head' in info:
config = 'header'
func = parse_html_header
else:
raise NotImplementedError
result = func(info)
print(info, 'parsed as', config)
return config, result |