Spaces:
Sleeping
Sleeping
File size: 30,301 Bytes
4f2c4a2 c6a27a9 4f2c4a2 d22ab04 4f2c4a2 c6a27a9 4f2c4a2 93a0fac 4f2c4a2 c6a27a9 4f2c4a2 93a0fac c6a27a9 4f2c4a2 c6a27a9 4f2c4a2 93a0fac 4f2c4a2 c6a27a9 93a0fac c6a27a9 4f2c4a2 93a0fac 4f2c4a2 93a0fac 4f2c4a2 c6a27a9 4f2c4a2 93a0fac 4f2c4a2 93a0fac c6a27a9 93a0fac c6a27a9 93a0fac c6a27a9 6d9b43a c6a27a9 93a0fac c6a27a9 4f2c4a2 c6a27a9 4f2c4a2 93a0fac c6a27a9 93a0fac 4f2c4a2 93a0fac 4f2c4a2 93a0fac 4f2c4a2 93a0fac 4f2c4a2 93a0fac 4f2c4a2 93a0fac 4f2c4a2 93a0fac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
"""
Adaptive Music Exercise Generator (Strict Duration Enforcement)
==============================================================
Generates custom musical exercises with LLM, perfectly fit to user-specified number of measures
AND time signature, guaranteeing exact durations in MIDI and in the UI!
Major updates:
- Added Gemma, Kimi Dev 72b, and Llama 3.1 AI model options
- Added duration sum display in Exercise Data tab
- Shows total duration units (16th notes) for verification
- Added DeepSeek AI model option
- Fixed difficulty level implementation
- Maintained all original functionality
"""
# -----------------------------------------------------------------------------
# 1. Runtime-time package installation (for fresh containers/Colab/etc)
# -----------------------------------------------------------------------------
import sys
import subprocess
from typing import Dict, Optional, Tuple, List
import time
import random
def install(packages: List[str]):
for package in packages:
try:
__import__(package)
except ImportError:
print(f"Installing missing package: {package}")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
install([
"mido", "midi2audio", "pydub", "gradio", "openai",
"requests", "numpy", "matplotlib", "librosa", "scipy",
])
# -----------------------------------------------------------------------------
# 2. Static imports
# -----------------------------------------------------------------------------
import requests
import json
import tempfile
import mido
from mido import Message, MidiFile, MidiTrack, MetaMessage
import re
from io import BytesIO
from midi2audio import FluidSynth
from pydub import AudioSegment
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import librosa
from scipy.io import wavfile
import os
import subprocess as sp
import base64
import shutil
from openai import OpenAI # For API models
# -----------------------------------------------------------------------------
# 3. Configuration & constants
# -----------------------------------------------------------------------------
MISTRAL_API_URL = "https://api.mistral.ai/v1/chat/completions"
MISTRAL_API_KEY = "yQdfM8MLbX9uhInQ7id4iUTwN4h4pDLX" # Replace with your key
OPENROUTER_API_KEYS = {
"DeepSeek": "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",
"Claude": "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",
"Gemma": "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",
"Kimi": "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",
"Llama 3.1": "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"
}
SOUNDFONT_URLS = {
"Trumpet": "https://github.com/FluidSynth/fluidsynth/raw/master/sf2/Trumpet.sf2",
"Piano": "https://musical-artifacts.com/artifacts/2719/GeneralUser_GS_1.471.sf2",
"Violin": "https://musical-artifacts.com/artifacts/2744/SalC5Light.sf2",
"Clarinet": "https://musical-artifacts.com/artifacts/2744/SalC5Light.sf2",
"Flute": "https://musical-artifacts.com/artifacts/2744/SalC5Light.sf2",
}
SAMPLE_RATE = 44100 # Hz
TICKS_PER_BEAT = 480 # Standard MIDI resolution
TICKS_PER_16TH = TICKS_PER_BEAT // 4 # 120 ticks per 16th note
if not os.path.exists('/usr/bin/fluidsynth'):
try:
os.system('apt-get update && apt-get install -y fluidsynth')
except Exception:
print("Could not install FluidSynth automatically. Please install it manually.")
os.makedirs("static", exist_ok=True)
# -----------------------------------------------------------------------------
# 4. Music theory helpers (note names ↔︎ MIDI numbers)
# -----------------------------------------------------------------------------
NOTE_MAP: Dict[str, int] = {
"C": 0, "C#": 1, "DB": 1,
"D": 2, "D#": 3, "EB": 3,
"E": 4, "F": 5, "F#": 6, "GB": 6,
"G": 7, "G#": 8, "AB": 8,
"A": 9, "A#": 10, "BB": 10,
"B": 11,
}
INSTRUMENT_PROGRAMS: Dict[str, int] = {
"Piano": 0, "Trumpet": 56, "Violin": 40,
"Clarinet": 71, "Flute": 73,
}
def note_name_to_midi(note: str) -> int:
match = re.match(r"([A-Ga-g][#b]?)(\d)", note)
if not match:
raise ValueError(f"Invalid note: {note}")
pitch, octave = match.groups()
pitch = pitch.upper().replace('b', 'B')
if pitch not in NOTE_MAP:
raise ValueError(f"Invalid pitch: {pitch}")
return NOTE_MAP[pitch] + (int(octave) + 1) * 12
def midi_to_note_name(midi_num: int) -> str:
notes = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
octave = (midi_num // 12) - 1
return f"{notes[midi_num % 12]}{octave}"
# -----------------------------------------------------------------------------
# 5. Duration scaling: guarantee the output sums to requested total (using integers)
# -----------------------------------------------------------------------------
def scale_json_durations(json_data, target_units: int) -> list:
"""Scales durations so that their sum is exactly target_units (16th notes)."""
durations = [int(d) for _, d in json_data]
total = sum(durations)
if total == 0:
return json_data
# Calculate proportional scaling with integer arithmetic
scaled = []
remainder = target_units
for i, (note, d) in enumerate(json_data):
if i < len(json_data) - 1:
# Proportional allocation
portion = max(1, round(d * target_units / total))
scaled.append([note, portion])
remainder -= portion
else:
# Last note gets all remaining units
scaled.append([note, max(1, remainder)])
return scaled
# -----------------------------------------------------------------------------
# 6. MIDI from scaled JSON (using integer durations)
# -----------------------------------------------------------------------------
def json_to_midi(json_data: list, instrument: str, tempo: int, time_signature: str, measures: int) -> MidiFile:
mid = MidiFile(ticks_per_beat=TICKS_PER_BEAT)
track = MidiTrack(); mid.tracks.append(track)
program = INSTRUMENT_PROGRAMS.get(instrument, 56)
numerator, denominator = map(int, time_signature.split('/'))
track.append(MetaMessage('time_signature', numerator=numerator,
denominator=denominator, time=0))
track.append(MetaMessage('set_tempo', tempo=mido.bpm2tempo(tempo), time=0))
track.append(Message('program_change', program=program, time=0))
for note_name, duration_units in json_data:
try:
note_num = note_name_to_midi(note_name)
ticks = int(duration_units * TICKS_PER_16TH)
ticks = max(ticks, 1)
velocity = random.randint(60, 100)
track.append(Message('note_on', note=note_num, velocity=velocity, time=0))
track.append(Message('note_off', note=note_num, velocity=velocity, time=ticks))
except Exception as e:
print(f"Error parsing note {note_name}: {e}")
return mid
# -----------------------------------------------------------------------------
# 7. MIDI → Audio (MP3) helpers
# -----------------------------------------------------------------------------
def get_soundfont(instrument: str) -> str:
os.makedirs("soundfonts", exist_ok=True)
sf2_path = f"soundfonts/{instrument}.sf2"
if not os.path.exists(sf2_path):
url = SOUNDFONT_URLS.get(instrument, SOUNDFONT_URLS["Trumpet"])
print(f"Downloading SoundFont for {instrument}…")
response = requests.get(url)
with open(sf2_path, "wb") as f:
f.write(response.content)
return sf2_path
def midi_to_mp3(midi_obj: MidiFile, instrument: str = "Trumpet") -> Tuple[str, float]:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mid") as mid_file:
midi_obj.save(mid_file.name)
wav_path = mid_file.name.replace(".mid", ".wav")
mp3_path = mid_file.name.replace(".mid", ".mp3")
sf2_path = get_soundfont(instrument)
try:
sp.run([
'fluidsynth', '-ni', sf2_path, mid_file.name,
'-F', wav_path, '-r', '44100', '-g', '1.0'
], check=True, capture_output=True)
except Exception:
fs = FluidSynth(sf2_path, sample_rate=44100, gain=1.0)
fs.midi_to_audio(mid_file.name, wav_path)
try:
sound = AudioSegment.from_wav(wav_path)
if instrument == "Trumpet":
sound = sound.high_pass_filter(200)
elif instrument == "Violin":
sound = sound.low_pass_filter(5000)
sound.export(mp3_path, format="mp3")
static_mp3_path = os.path.join('static', os.path.basename(mp3_path))
shutil.move(mp3_path, static_mp3_path)
return static_mp3_path, sound.duration_seconds
finally:
for f in [mid_file.name, wav_path]:
try:
os.remove(f)
except FileNotFoundError:
pass
# -----------------------------------------------------------------------------
# 8. Prompt engineering for variety (using integer durations)
# -----------------------------------------------------------------------------
def get_fallback_exercise(instrument: str, level: str, key: str,
time_sig: str, measures: int) -> str:
instrument_patterns = {
"Trumpet": ["C4", "D4", "E4", "G4", "E4", "C4"],
"Piano": ["C4", "E4", "G4", "C5", "G4", "E4"],
"Violin": ["G4", "A4", "B4", "D5", "B4", "G4"],
"Clarinet": ["E4", "F4", "G4", "Bb4", "G4", "E4"],
"Flute": ["A4", "B4", "C5", "E5", "C5", "A4"],
}
pattern = instrument_patterns.get(instrument, instrument_patterns["Trumpet"])
numerator, denominator = map(int, time_sig.split('/'))
units_per_measure = numerator * (16 // denominator)
target_units = measures * units_per_measure
notes, durs = [], []
i = 0
# Use quarter notes (4 units) as base duration
while len(notes) * 4 < target_units:
notes.append(pattern[i % len(pattern)])
durs.append(4)
i += 1
# Adjust last duration to match total exactly
total_units = len(durs) * 4
if total_units > target_units:
durs[-1] = 4 - (total_units - target_units)
return json.dumps([[n, d] for n, d in zip(notes, durs)])
def get_style_based_on_level(level: str) -> str:
styles = {
"Beginner": ["simple", "legato", "stepwise"],
"Intermediate": ["jazzy", "bluesy", "march-like", "syncopated"],
"Advanced": ["technical", "chromatic", "fast arpeggios", "wide intervals"],
}
return random.choice(styles.get(level, ["technical"]))
def get_technique_based_on_level(level: str) -> str:
techniques = {
"Beginner": ["with long tones", "with simple rhythms", "focusing on tone"],
"Intermediate": ["with slurs", "with accents", "using triplets"],
"Advanced": ["with double tonguing", "with extreme registers", "complex rhythms"],
}
return random.choice(techniques.get(level, ["with slurs"]))
# -----------------------------------------------------------------------------
# 9. LLM Query Function (with enhanced error handling)
# -----------------------------------------------------------------------------
def query_llm(model_name: str, prompt: str, instrument: str, level: str, key: str,
time_sig: str, measures: int) -> str:
numerator, denominator = map(int, time_sig.split('/'))
units_per_measure = numerator * (16 // denominator)
required_total = measures * units_per_measure
duration_constraint = (
f"Sum of all durations MUST BE EXACTLY {required_total} units (16th notes). "
f"Each integer duration represents a 16th note (1=16th, 2=8th, 4=quarter, 8=half, 16=whole). "
f"If it doesn't match, the exercise is invalid."
)
system_prompt = (
f"You are an expert music teacher specializing in {instrument.lower()}. "
"Create customized exercises using INTEGER durations representing 16th notes."
)
if prompt.strip():
user_prompt = (
f"{prompt} {duration_constraint} Output ONLY a JSON array of [note, duration] pairs."
)
else:
style = get_style_based_on_level(level)
technique = get_technique_based_on_level(level)
user_prompt = (
f"Create a {style} {instrument.lower()} exercise in {key} with {time_sig} time signature "
f"{technique} for a {level.lower()} player. {duration_constraint} "
"Output ONLY a JSON array of [note, duration] pairs following these rules: "
"Use standard note names (e.g., \"Bb4\", \"F#5\"). Monophonic only. "
"Durations: 1=16th, 2=8th, 4=quarter, 8=half, 16=whole. "
"Sum must be exactly as specified. ONLY output the JSON array. No prose."
)
# Retry up to 3 times for rate limited models
max_retries = 3
retry_delay = 5 # seconds
for attempt in range(max_retries):
try:
if model_name == "Mistral":
headers = {
"Authorization": f"Bearer {MISTRAL_API_KEY}",
"Content-Type": "application/json",
}
payload = {
"model": "mistral-medium",
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
"temperature": 0.7 if level == "Advanced" else 0.5,
"max_tokens": 1000,
"top_p": 0.95,
"frequency_penalty": 0.2,
"presence_penalty": 0.2,
}
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
return content.replace("```json","").replace("```","").strip()
elif model_name in ["DeepSeek", "Claude", "Gemma", "Kimi", "Llama 3.1"]:
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEYS[model_name],
)
model_map = {
"DeepSeek": "deepseek/deepseek-chat-v3-0324:free",
"Claude": "anthropic/claude-3.5-sonnet:beta",
"Gemma": "google/gemma-3n-e2b-it:free",
"Kimi": "moonshotai/kimi-dev-72b:free",
"Llama 3.1": "meta-llama/llama-3.1-405b-instruct:free"
}
# Special handling for Gemma API structure
if model_name == "Gemma":
messages = [
{"role": "user", "content": user_prompt}
]
else:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
completion = client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://github.com/AdaptiveMusicExerciseGenerator",
"X-Title": "Music Exercise Generator",
},
model=model_map[model_name],
messages=messages,
temperature=0.7 if level == "Advanced" else 0.5,
max_tokens=1000,
top_p=0.95,
frequency_penalty=0.2,
presence_penalty=0.2,
)
content = completion.choices[0].message.content
return content.replace("```json","").replace("```","").strip()
else:
return get_fallback_exercise(instrument, level, key, time_sig, measures)
except Exception as e:
print(f"Error querying {model_name} API (attempt {attempt+1}): {e}")
if "429" in str(e) or "Rate limit" in str(e):
print(f"Rate limited, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
else:
break
# Fallback to Mistral if other APIs fail
print(f"All attempts failed for {model_name}, using Mistral fallback")
try:
headers = {
"Authorization": f"Bearer {MISTRAL_API_KEY}",
"Content-Type": "application/json",
}
payload = {
"model": "mistral-medium",
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
"temperature": 0.7 if level == "Advanced" else 0.5,
"max_tokens": 1000,
"top_p": 0.95,
"frequency_penalty": 0.2,
"presence_penalty": 0.2,
}
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
return content.replace("```json","").replace("```","").strip()
except Exception as e:
print(f"Error querying Mistral fallback: {e}")
return get_fallback_exercise(instrument, level, key, time_sig, measures)
# -----------------------------------------------------------------------------
# 10. Robust JSON parsing for LLM outputs
# -----------------------------------------------------------------------------
def safe_parse_json(text: str) -> Optional[list]:
try:
text = text.replace("'", '"')
match = re.search(r"\[(\s*\[.*?\]\s*,?)*\]", text, re.DOTALL)
if match:
return json.loads(match.group(0))
return json.loads(text)
except Exception as e:
print(f"JSON parsing error: {e}\nRaw text: {text}")
return None
# -----------------------------------------------------------------------------
# 11. Main orchestration: talk to API, *scale durations*, build MIDI, UI values
# -----------------------------------------------------------------------------
def generate_exercise(instrument: str, level: str, key: str, tempo: int, time_signature: str,
measures: int, custom_prompt: str, mode: str, ai_model: str) -> Tuple[str, Optional[str], str, MidiFile, str, str, int]:
try:
prompt_to_use = custom_prompt if mode == "Exercise Prompt" else ""
output = query_llm(ai_model, prompt_to_use, instrument, level, key, time_signature, measures)
parsed = safe_parse_json(output)
if not parsed:
return "Invalid JSON format", None, str(tempo), None, "0", time_signature, 0
# Calculate total required 16th notes
numerator, denominator = map(int, time_signature.split('/'))
units_per_measure = numerator * (16 // denominator)
total_units = measures * units_per_measure
# Strict scaling
parsed_scaled = scale_json_durations(parsed, total_units)
# Calculate total duration units
total_duration = sum(d for _, d in parsed_scaled)
# Generate MIDI and audio
midi = json_to_midi(parsed_scaled, instrument, tempo, time_signature, measures)
mp3_path, real_duration = midi_to_mp3(midi, instrument)
output_json_str = json.dumps(parsed_scaled, indent=2)
return output_json_str, mp3_path, str(tempo), midi, f"{real_duration:.2f} seconds", time_signature, total_duration
except Exception as e:
return f"Error: {str(e)}", None, str(tempo), None, "0", time_signature, 0
# -----------------------------------------------------------------------------
# 12. AI chat assistant with enhanced error handling
# -----------------------------------------------------------------------------
def handle_chat(message: str, history: List, instrument: str, level: str, ai_model: str):
if not message.strip():
return "", history
messages = [{"role": "system", "content": f"You are a {instrument} teacher for {level} students."}]
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
max_retries = 3
retry_delay = 3 # seconds
for attempt in range(max_retries):
try:
if ai_model == "Mistral":
headers = {"Authorization": f"Bearer {MISTRAL_API_KEY}", "Content-Type": "application/json"}
payload = {"model": "mistral-medium", "messages": messages, "temperature": 0.7, "max_tokens": 500}
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
history.append((message, content))
return "", history
elif ai_model in ["DeepSeek", "Claude", "Gemma", "Kimi", "Llama 3.1"]:
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEYS[ai_model],
)
model_map = {
"DeepSeek": "deepseek/deepseek-chat-v3-0324:free",
"Claude": "anthropic/claude-3.5-sonnet:beta",
"Gemma": "google/gemma-3n-e2b-it:free",
"Kimi": "moonshotai/kimi-dev-72b:free",
"Llama 3.1": "meta-llama/llama-3.1-405b-instruct:free"
}
# Special handling for Gemma API structure
if ai_model == "Gemma":
adjusted_messages = [{"role": "user", "content": msg["content"]} for msg in messages]
else:
adjusted_messages = messages
completion = client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://github.com/AdaptiveMusicExerciseGenerator",
"X-Title": "Music Exercise Generator",
},
model=model_map[ai_model],
messages=adjusted_messages,
temperature=0.7,
max_tokens=500,
)
content = completion.choices[0].message.content
history.append((message, content))
return "", history
else:
history.append((message, "Error: Invalid AI model selected"))
return "", history
except Exception as e:
print(f"Chat error with {ai_model} (attempt {attempt+1}): {e}")
if "429" in str(e) or "Rate limit" in str(e):
print(f"Rate limited, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
else:
# Fallback to Mistral
print(f"Using Mistral fallback for chat")
try:
headers = {"Authorization": f"Bearer {MISTRAL_API_KEY}", "Content-Type": "application/json"}
payload = {"model": "mistral-medium", "messages": messages, "temperature": 0.7, "max_tokens": 500}
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
history.append((message, content))
return "", history
except Exception as e:
history.append((message, f"Error: {str(e)}"))
return "", history
history.append((message, "Error: All API attempts failed"))
return "", history
# -----------------------------------------------------------------------------
# 13. Gradio user interface definition
# -----------------------------------------------------------------------------
def create_ui() -> gr.Blocks:
with gr.Blocks(title="Adaptive Music Exercise Generator", theme="soft") as demo:
gr.Markdown("# 🎼 Adaptive Music Exercise Generator")
current_midi = gr.State(None)
current_exercise = gr.State("")
mode = gr.Radio(["Exercise Parameters","Exercise Prompt"], value="Exercise Parameters", label="Generation Mode")
with gr.Row():
with gr.Column(scale=1):
with gr.Group(visible=True) as params_group:
gr.Markdown("### Exercise Parameters")
ai_model = gr.Radio(
["Mistral", "DeepSeek", "Claude", "Gemma", "Kimi", "Llama 3.1"],
value="Mistral",
label="AI Model"
)
instrument = gr.Dropdown([
"Trumpet", "Piano", "Violin", "Clarinet", "Flute",
], value="Trumpet", label="Instrument")
level = gr.Radio([
"Beginner", "Intermediate", "Advanced",
], value="Intermediate", label="Difficulty Level")
key = gr.Dropdown([
"C Major", "G Major", "D Major", "F Major", "Bb Major", "A Minor", "E Minor",
], value="C Major", label="Key Signature")
time_signature = gr.Dropdown(["3/4", "4/4"], value="4/4", label="Time Signature")
measures = gr.Radio([4, 8], value=4, label="Length (measures)")
with gr.Group(visible=False) as prompt_group:
gr.Markdown("### Exercise Prompt")
custom_prompt = gr.Textbox("", label="Enter your custom prompt", lines=3)
measures_prompt = gr.Radio([4, 8], value=4, label="Length (measures)")
generate_btn = gr.Button("Generate Exercise", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Exercise Player"):
audio_output = gr.Audio(label="Generated Exercise", autoplay=True, type="filepath")
bpm_display = gr.Textbox(label="Tempo (BPM)")
time_sig_display = gr.Textbox(label="Time Signature")
duration_display = gr.Textbox(label="Audio Duration", interactive=False)
with gr.TabItem("Exercise Data"):
json_output = gr.Code(label="JSON Representation", language="json")
# Duration sum display
duration_sum = gr.Number(
label="Total Duration Units (16th notes)",
interactive=False,
precision=0
)
with gr.TabItem("MIDI Export"):
midi_output = gr.File(label="MIDI File")
download_midi = gr.Button("Generate MIDI File")
with gr.TabItem("AI Chat"):
chat_history = gr.Chatbot(label="Practice Assistant", height=400)
chat_message = gr.Textbox(label="Ask the AI anything about your practice")
send_chat_btn = gr.Button("Send")
# Toggle UI groups
mode.change(
fn=lambda m: {
params_group: gr.update(visible=(m == "Exercise Parameters")),
prompt_group: gr.update(visible=(m == "Exercise Prompt")),
},
inputs=[mode], outputs=[params_group, prompt_group]
)
def generate_caller(mode_val, instrument_val, level_val, key_val,
time_sig_val, measures_val, prompt_val, measures_prompt_val, ai_model_val):
real_measures = measures_prompt_val if mode_val == "Exercise Prompt" else measures_val
fixed_tempo = 60
return generate_exercise(
instrument_val, level_val, key_val, fixed_tempo, time_sig_val,
real_measures, prompt_val, mode_val, ai_model_val
)
generate_btn.click(
fn=generate_caller,
inputs=[mode, instrument, level, key, time_signature, measures, custom_prompt, measures_prompt, ai_model],
outputs=[json_output, audio_output, bpm_display, current_midi, duration_display, time_sig_display, duration_sum]
)
def save_midi(json_data, instr, time_sig):
parsed = safe_parse_json(json_data)
if not parsed:
return None
numerator, denominator = map(int, time_sig.split('/'))
units_per_measure = numerator * (16 // denominator)
total_units = sum(int(d[1]) for d in parsed)
measures_est = max(1, round(total_units / units_per_measure))
scaled = scale_json_durations(parsed, measures_est * units_per_measure)
midi_obj = json_to_midi(scaled, instr, 60, time_sig, measures_est)
midi_path = os.path.join("static", "exercise.mid")
midi_obj.save(midi_path)
return midi_path
download_midi.click(
fn=save_midi,
inputs=[json_output, instrument, time_signature],
outputs=[midi_output],
)
send_chat_btn.click(
fn=handle_chat,
inputs=[chat_message, chat_history, instrument, level, ai_model],
outputs=[chat_message, chat_history],
)
return demo
# -----------------------------------------------------------------------------
# 14. Entry point
# -----------------------------------------------------------------------------
if __name__ == "__main__":
demo = create_ui()
demo.launch() |