from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch class EmotionModel: def __init__(self): self.model_name = "joeddav/distilbert-base-uncased-go-emotions-student" self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name) self.labels = self.model.config.id2label def predict(self, text): inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = self.model(**inputs).logits probs = torch.sigmoid(logits)[0] return { self.labels[i]: float(probs[i]) for i in range(len(probs)) if probs[i] > 0.4 } class SuicidalIntentModel: def __init__(self): self.model_name = "sentinet/suicidality" self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name) def _score_text(self, text): inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = self.model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=1) return float(probs[0][1]) # Probability of suicidal intent def predict(self, text, window_size=20, stride=10): tokens = self.tokenizer.tokenize(text) if len(tokens) <= window_size: return self._score_text(text) scores = [] for i in range(0, len(tokens) - window_size + 1, stride): window_tokens = tokens[i:i + window_size] window_text = self.tokenizer.convert_tokens_to_string(window_tokens) score = self._score_text(window_text) scores.append(score) return max(scores, default=0.0)