def homework06_solution(theta0, theta1, theta2, learning_rate): import numpy as np import pandas as pd def logistic_predict(b0, b1, b2, x1, x2): z = b0 + b1*x1 + b2*x2 p = 1 / (1 + np.exp(-z)) return p def binary_cross_entropy(X, y, parameter_list): entropy_loss = 0 for n in range(0,len(X)): # calculate the linear output given the current weights z = parameter_list[0] + parameter_list[1]*X[n][0]+ parameter_list[2]*X[n][1] # calculate sigmoid output given z p = 1 / (1 + np.exp(-z)) # calculate the binary cross-entropy predict_1 = y[n] * np.log(p) predict_0 = (1-y[n]) * np.log(1-p) entropy_loss += -(predict_1 + predict_0) / len(X) return entropy_loss def get_logistic_results(data, theta0, theta1, theta2): ## (2) make logistic prediction y_hat_list = [] theta0_grad = 0 theta1_grad = 0 theta2_grad = 0 for i in range(len(data)): x1 = data.iloc[i,0] x2 = data.iloc[i,1] y = data.iloc[i,2] y_hat = logistic_predict(theta0, theta1, theta2, x1, x2) y_hat_list.append(y_hat) ## (3) calculate gradients theta0_grad = theta0_grad - 1/len(data)*(y - y_hat)*1.0 theta1_grad = theta1_grad - 1/len(data)*(y - y_hat)*x1 theta2_grad = theta2_grad - 1/len(data)*(y - y_hat)*x2 data['y_hat'] = y_hat_list data['y-y_hat'] = data['y'] - data['y_hat'] data['(y-y_hat)*x_1'] = data['y-y_hat']*data.iloc[:,0] data['(y-y_hat)*x_2'] = data['y-y_hat']*data.iloc[:,1] return data, theta0_grad, theta1_grad, theta2_grad ## (1) load data X = np.array([[9,9], [0,0], [8,6], [3,3], [7,8], [0.5,0.5], [5,6], [6,7]]) y = [1,0,1,0,1,0,1,1] data = pd.DataFrame(X, columns=['X1','X2']) data['y'] = y ## (2) get regression table, gradients q3.2 data, theta0_grad, theta1_grad, theta2_grad = get_logistic_results(data, theta0, theta1, theta2) ### (3) summarize gradient results for question 3.2 data_t = data.T data_t = data_t.round(5) data_t.insert(loc=0, column='Name', value=['X1', 'X2', 'y', 'y_hat', 'y-y_hat', '(y-y_hat)*x_1', '(y-y_hat)*x_2']) ### (4) summarize gradient results for question 3b q3_loss = binary_cross_entropy(X, y, [theta0, theta1, theta2]) ### summarize gradient results for question Q3.3 ### update parameter using gradient descent Q3.4 theta0_new = theta0 - learning_rate*theta0_grad theta1_new = theta1 - learning_rate*theta1_grad theta2_new = theta2 - learning_rate*theta2_grad ### (6) summarize gradient results for question 3.4 q3_loss_new = binary_cross_entropy(X, y, [theta0_new, theta1_new, theta2_new]) ### (7) return all results for Gradio visualization data_final = data_t.T print(data_final['y-y_hat'].values[1:]) y_diff_sum = data_final['y-y_hat'].values[1:].sum() y_diff_x1_sum = data_final['(y-y_hat)*x_1'].values[1:].sum() y_diff_x2_sum = data_final['(y-y_hat)*x_2'].values[1:].sum() return data_t.T, q3_loss, y_diff_sum, y_diff_x1_sum, y_diff_x2_sum, theta0_grad, theta1_grad , theta2_grad, theta0_new, theta1_new, theta2_new, q3_loss_new import numpy as np import gradio as gr ### configure inputs set_theta0 = gr.inputs.Number() set_theta1 = gr.inputs.Number() set_theta2 = gr.inputs.Number() set_ita = gr.inputs.Number() ### configure outputs set_output_q3a = gr.outputs.Dataframe(type='pandas', label ='Question 3.2') set_output_q3b = gr.outputs.Textbox(label ='Question 3.1: Initial BCE loss') set_output_q3c = gr.outputs.Textbox(label ='Question 3.2: sum(y-y_hat)') set_output_q3d = gr.outputs.Textbox(label ='Question 3.2: sum((y-y_hat)*x_1)') set_output_q3e = gr.outputs.Textbox(label ='Question 3.2: sum((y-y_hat)*x_2)') set_output_q4a0 = gr.outputs.Textbox(label ='Question 3.3: theta0_grad') set_output_q4a1 = gr.outputs.Textbox(label ='Question 3.3: theta1_grad') set_output_q4a2 = gr.outputs.Textbox(label ='Question 3.3: theta2_grad') set_output_q4b0 = gr.outputs.Textbox(label ='Question 3.4: theta0_new: updated by gradient descent') set_output_q4b1 = gr.outputs.Textbox(label ='Question 3.4: theta1_new: updated by gradient descent') set_output_q4b2 = gr.outputs.Textbox(label ='Question 3.4: theta2_new: updated by gradient descent') set_output_q4b4 = gr.outputs.Textbox(label ='Question 4 (4): New BCE after update the parameters using gradient descent') ### configure Gradio interface = gr.Interface(fn=homework06_solution, inputs=[set_theta0, set_theta1, set_theta2, set_ita], outputs=[set_output_q3a, set_output_q3b, set_output_q3c, set_output_q3d, set_output_q3e, set_output_q4a0, set_output_q4a1, set_output_q4a2, set_output_q4b0, set_output_q4b1, set_output_q4b2, set_output_q4b4], title="CSCI4750/5750(hw06): Linear Regression/Optimization", description= "Click examples below for a quick demo", theme = 'huggingface', layout = 'horizontal', live=True ) interface.launch(debug=True)