SUHHHH's picture
Update app.py
3659121 verified
import gradio as gr
from gradio_imageslider import ImageSlider
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import io
from PIL import Image
import requests
from io import BytesIO
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def load_img(image, output_type="pil"):
if isinstance(image, str):
if image.startswith("http://") or image.startswith("https://"):
response = requests.get(image)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image).convert("RGB")
elif isinstance(image, Image.Image):
image = image.convert("RGB")
else:
raise ValueError("Unsupported image type")
if output_type == "pil":
return image
elif output_type == "numpy":
return np.array(image)
else:
raise ValueError("Unsupported output type")
@spaces.GPU
def fn(image):
if image is None or len(image) == 0:
return image, None
im = load_img(image, output_type="pil")
im = im.convert("RGB")
image_size = im.size
origin = im.copy()
image = load_img(im)
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
# Convert image to bytes for download
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
return (image, origin), img_byte_arr
def create_download_component(img_bytes):
if img_bytes is not None:
return gr.File(value=img_bytes, visible=True, label="Download Result")
return gr.File(visible=False)
slider1 = ImageSlider(label="birefnet", type="pil")
slider2 = ImageSlider(label="birefnet", type="pil")
image = gr.Image(label="Upload an image")
text = gr.Textbox(label="Paste an image URL")
chameleon = load_img("butterfly.jpg", output_type="pil")
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
tab1 = gr.Interface(
fn,
inputs=image,
outputs=[slider1, gr.File(label="Download Result")],
examples=[chameleon],
api_name="image"
)
tab2 = gr.Interface(
fn,
inputs=text,
outputs=[slider2, gr.File(label="Download Result")],
examples=[url],
api_name="text"
)
demo = gr.TabbedInterface(
[tab1, tab2],
["image", "text"],
title="birefnet for background removal"
)
if __name__ == "__main__":
demo.launch()