|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
|
|
|
|
base_model = "microsoft/phi-2" |
|
adapter_model = "Sabbir772/phi2_sylhet" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
base = AutoModelForCausalLM.from_pretrained(base_model) |
|
model = PeftModel.from_pretrained(base, adapter_model) |
|
model.eval() |
|
|
|
def translate(model, tokenizer, input_text, direction=0, max_new_tokens=256): |
|
if direction == 0: |
|
prompt = f"Translate Bangla to Sylheti: {input_text}\nOutput:" |
|
else: |
|
prompt = f"Translate Sylheti to Bangla: {input_text}\nOutput:" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens) |
|
return tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
|
|
def infer(text, direction): |
|
return translate(model, tokenizer, text, direction=direction) |
|
|
|
demo = gr.Interface( |
|
fn=infer, |
|
inputs=[gr.Textbox(label="Input Text"), gr.Radio(["Bangla to Sylheti", "Sylheti to Bangla"], type="index", label="Translation Direction")], |
|
outputs="text", |
|
title="Phi-2 Sylheti Translator" |
|
) |
|
|
|
demo.launch() |
|
|