Spaces:
Runtime error
Runtime error
File size: 1,101 Bytes
6271b1c 3ee2f5e 8f2be6f 3ee2f5e 8f2be6f 3ee2f5e 8f2be6f 6271b1c 3ee2f5e 8f2be6f 6271b1c 3ee2f5e 6271b1c 3ee2f5e 8f2be6f 6271b1c 3ee2f5e 6271b1c 3ee2f5e 6271b1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# Model ID
model_id = "large-traversaal/Alif-1.0-8B-Instruct"
# Load tokenizer and model (CPU-friendly)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu") # Changed to CPU
# Create text generation pipeline
chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device="cpu") # Ensuring CPU use
# Function to generate responses
def chat(message):
response = chatbot(message, max_new_tokens=100, do_sample=True, temperature=0.3)
return response[0]["generated_text"]
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# π€ Alif Chatbot - Urdu Language AI Model")
user_input = gr.Textbox(label="User Input", placeholder="Ψ§ΩΎΩΨ§ Ψ³ΩΨ§Ω ΫΫΨ§ΪΊ ΩΪ©ΪΎΫΪΊ...")
submit_btn = gr.Button("Send")
bot_response = gr.Textbox(label="AI Response")
submit_btn.click(fn=chat, inputs=user_input, outputs=bot_response)
# Launch the app
if __name__ == "__main__":
demo.launch()
|