File size: 12,973 Bytes
f056744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import argparse
import gc
import os
import random
import re
import time
from distutils.util import strtobool

import pandas as pd

parser = argparse.ArgumentParser()
parser.add_argument(
    "--img_path",
    type=str,
)
parser.add_argument(
    "--target_prompt",
    type=str,
)
parser.add_argument(
    "--source_prompt",
    type=str,
    default=''
)
parser.add_argument(
    "--blend_word",
    type=str,
    default=''
)
parser.add_argument(
    "--mask_path",
    type=str,
    default=None
)


parser.add_argument(
    "--gpu",
    type=str,
    default="0",
)
parser.add_argument(
    "--seed",
    type=int,
    default=0
)
parser.add_argument(
    "--results_dir",
    type=str,
    default='results'
)


parser.add_argument(
    "--model",
    type=str,
    default='flux',
    choices=['flux']
)

parser.add_argument(
    "--ca_steps",
    type=int,
    default=10,
    help="Number of steps to apply I2T-CA adaptation and injection.",
)

parser.add_argument(
    "--sa_steps",
    type=int,
    default=7
    help="Number of steps to apply I2I-SA adaptation and injection.",
)

parser.add_argument(
    "--feature_steps",
    type=int,
    default=5
    help="Number of steps to inject residual features.",
)


parser.add_argument(
    "--ca_attn_layer_from",
    type=int,
    default=13,
    help="Layers to apply I2T-CA adaptation and injection.",
)
parser.add_argument(
    "--ca_attn_layer_to",
    type=int,
    default=45,
    help="Layers to apply I2T-CA adaptation and injection.",
)

parser.add_argument(
    "--sa_attn_layer_from",
    type=int,
    default=20,
    help="Layers to apply I2I-SA adaptation and injection.",
)
parser.add_argument(
    "--sa_attn_layer_to",
    type=int,
    default=45,
    help="Layers to apply I2I-SA adaptation and injection.",
)

parser.add_argument(
    "--feature_layer_from",
    type=int,
    default=13,
    help="Layers to inject residual features.",
)
parser.add_argument(
    "--feature_layer_to",
    type=int,
    default=20,
    help="Layers to inject residual features.",
)

parser.add_argument(
    "--flow_steps",
    type=int,
    default=7,
    help="Steps to apply forward step before inversion",
)
parser.add_argument(
    "--step_start",
    type=int,
    default=0
)


parser.add_argument(
    "--num_inference_steps",
    type=int,
    default=28
)
parser.add_argument(
    "--guidance_scale",
    type=float,
    default=3.5,
)

parser.add_argument(
    "--attn_topk",
    type=int,
    default=20,
    help="Hyperparameter for I2I-SA adaptaion."
)

parser.add_argument(
    "--text_scale",
    type=float,
    default=4,
    help="Hyperparameter for I2T-CA adaptaion."
)

parser.add_argument(
    "--mid_step_index",
    type=int,
    default=14,
    help="Hyperparameter for mid-step feature extraction."
)


parser.add_argument(
    "--use_mask",
    type=strtobool,
    default=True
)

parser.add_argument(
    "--use_ca_mask",
    type=strtobool,
    default=True
)

parser.add_argument(
    "--mask_steps",
    type=int,
    default=18,
    help="Steps to apply latent blending"
)

parser.add_argument(
    "--mask_dilation",
    type=int,
    default=3
)
parser.add_argument(
    "--mask_nbins",
    type=int,
    default=128
)

args = parser.parse_args()

os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.gpu}"

import gc

import matplotlib.pyplot as plt
import numpy as np
import torch
import yaml
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils.torch_utils import randn_tensor
from PIL import Image

from src.attn_utils.attn_utils import AttentionAdapter, AttnCollector
from src.attn_utils.flux_attn_processor import NewFluxAttnProcessor2_0
from src.attn_utils.seq_aligner import get_refinement_mapper
from src.callback.callback_fn import CallbackAll
from src.inversion.inverse import get_inversed_latent_list
from src.inversion.scheduling_flow_inverse import \
    FlowMatchEulerDiscreteForwardScheduler
from src.pipeline.flux_pipeline import NewFluxPipeline
from src.transformer_utils.transformer_utils import (FeatureCollector,
                                                     FeatureReplace)
from src.utils import (find_token_id_differences, find_word_token_indices,
                       get_flux_pipeline, mask_decode, mask_interpolate)


def fix_seed(random_seed):
    """
    fix seed to control any randomness from a code 
    (enable stability of the experiments' results.)
    """
    torch.manual_seed(random_seed)
    torch.cuda.manual_seed(random_seed)
    torch.cuda.manual_seed_all(random_seed)  # if use multi-GPU
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    np.random.seed(random_seed)
    random.seed(random_seed)

def main(args):
    fix_seed(args.seed)
    device = torch.device('cuda')

    pipe = get_flux_pipeline(pipeline_class=NewFluxPipeline)
    attn_proc = NewFluxAttnProcessor2_0
    pipe = pipe.to(device)

    layer_order = range(57)

    ca_layer_list = layer_order[args.ca_attn_layer_from:args.ca_attn_layer_to]
    sa_layer_list = layer_order[args.feature_layer_to:args.sa_attn_layer_to]
    feature_layer_list = layer_order[args.feature_layer_from:args.feature_layer_to]

    
    img_path = args.img_path
    source_img = Image.open(img_path).resize((1024, 1024)).convert("RGB")    
    img_base_name = os.path.splitext(img_path)[0].split('/')[-1]
    result_img_dir = f"{args.results_dir}/seed_{args.seed}/{args.target_prompt}"
        
    source_prompt = args.source_prompt
    target_prompt = args.target_prompt
    prompts = [source_prompt, target_prompt]

    print(prompts)
    mask = None

    if args.use_mask:
        use_mask = True

        if args.mask_path is not None:
            mask = Image.open(args.mask_path)
            mask = torch.tensor(np.array(mask)).bool()
            mask = mask.to(device)

            # Increase the latent blending steps if the ground truth mask is used.
            args.mask_steps = int(args.num_inference_steps * 0.9)
            
            source_ca_index = None
            target_ca_index = None
            use_ca_mask = False

        elif args.use_ca_mask and source_prompt:
            mask = None
            if args.blend_word and args.blend_word in source_prompt:
                editing_source_token_index = find_word_token_indices(source_prompt, args.blend_word, pipe.tokenizer_2)
                editing_target_token_index = None
            else:
                editing_tokens_info = find_token_id_differences(*prompts, pipe.tokenizer_2)
                editing_source_token_index = editing_tokens_info['prompt_1']['index']
                editing_target_token_index = editing_tokens_info['prompt_2']['index']

            use_ca_mask = True
            if editing_source_token_index:
                source_ca_index = editing_source_token_index
                target_ca_index = None
            elif editing_target_token_index:
                source_ca_index = None
                target_ca_index = editing_target_token_index
            else:
                source_ca_index = None
                target_ca_index = None
                use_ca_mask = False

        else:
            source_ca_index = None
            target_ca_index = None
            use_ca_mask = False

    else:
        use_mask = False
        use_ca_mask = False
        source_ca_index = None
        target_ca_index = None

    if source_prompt:
        # Use I2T-CA injection
        mappers, alphas = get_refinement_mapper(prompts, pipe.tokenizer_2, max_len=512)
        mappers = mappers.to(device=device)
        alphas = alphas.to(device=device, dtype=pipe.dtype)
        alphas = alphas[:, None, None, :]

        ca_steps = args.ca_steps
        attn_adj_from = 1

    else:
        # Not use I2T-CA injection
        mappers = None
        alphas = None

        ca_steps = 0
        attn_adj_from=3

    sa_steps = args.sa_steps
    feature_steps = args.feature_steps

    attn_controller = AttentionAdapter(
        ca_layer_list=ca_layer_list,
        sa_layer_list=sa_layer_list,
        ca_steps=ca_steps,
        sa_steps=sa_steps,
        method='replace_topk',
        topk=args.attn_topk,
        text_scale=args.text_scale,
        mappers=mappers,
        alphas=alphas,
        attn_adj_from=attn_adj_from,
        save_source_ca=source_ca_index is not None,
        save_target_ca=target_ca_index is not None,
    )

    attn_collector = AttnCollector(
        transformer=pipe.transformer, 
        controller=attn_controller, 
        attn_processor_class=NewFluxAttnProcessor2_0, 
    )

    feature_controller = FeatureReplace(
        layer_list=feature_layer_list,
        feature_steps=feature_steps,
    )

    feature_collector = FeatureCollector(
        transformer=pipe.transformer, 
        controller=feature_controller,
    )

    num_prompts=len(prompts)
    
    shape = (1, 16, 128, 128)
    generator = torch.Generator(device=device).manual_seed(args.seed)        
    latents = randn_tensor(shape, device=device, generator=generator)
    latents = pipe._pack_latents(latents, *latents.shape)
    
    attn_collector.restore_orig_attention()
    feature_collector.restore_orig_transformer()

    t0 = time.perf_counter()

    inv_latents = get_inversed_latent_list(
        pipe,
        source_img,
        random_noise=latents,
        num_inference_steps=args.num_inference_steps,
        backward_method="ode",
        use_prompt_for_inversion=False,
        guidance_scale_for_inversion=0,
        prompt_for_inversion='',
        flow_steps=args.flow_steps,
    )

    source_latents = inv_latents[::-1]
    target_latents = inv_latents[::-1]

    attn_collector.register_attention_control()
    feature_collector.register_transformer_control()

    callback_fn = CallbackAll(
        latents=source_latents,
        attn_collector=attn_collector, 
        feature_collector=feature_collector, 
        feature_inject_steps=feature_steps,
        mid_step_index=args.mid_step_index,
        step_start=args.step_start,
        use_mask=use_mask,
        use_ca_mask=use_ca_mask,
        source_ca_index=source_ca_index,
        target_ca_index=target_ca_index,
        mask_kwargs={'dilation': args.mask_dilation},
        mask_steps=args.mask_steps,
        mask=mask,
    )

    init_latent = target_latents[args.step_start]
    init_latent = init_latent.repeat(num_prompts, 1, 1)
    init_latent[0] = source_latents[args.mid_step_index]
    
    os.makedirs(result_img_dir, exist_ok=True)
    pipe.scheduler = FlowMatchEulerDiscreteForwardScheduler.from_config(
        pipe.scheduler.config, 
        step_start=args.step_start,
        margin_index_from_image=0
    )

    attn_controller.reset()
    feature_controller.reset()
    attn_controller.text_scale = args.text_scale
    attn_controller.cur_step = args.step_start
    feature_controller.cur_step = args.step_start

    with torch.no_grad():
        images = pipe(
            prompts,               
            latents=init_latent,
            num_images_per_prompt=1,
            guidance_scale=args.guidance_scale,
            num_inference_steps=args.num_inference_steps,
            generator=generator,
            callback_on_step_end=callback_fn,
            mid_step_index=args.mid_step_index,
            step_start=args.step_start,
            callback_on_step_end_tensor_inputs=['latents'],
        ).images
    
    t1 = time.perf_counter()
    print(f"Done in {t1 - t0:.1f}s.")

    source_img_path = os.path.join(result_img_dir, f"source.png")
    source_img.save(source_img_path)
    
    for i, img in enumerate(images[1:]):
        target_img_path = os.path.join(result_img_dir, f"target_{i}.png")
        img.save(target_img_path)

    target_text_path = os.path.join(result_img_dir, f"target_prompts.txt")
    with open(target_text_path, 'w') as file:
        file.write(target_prompt + '\n')
    
    source_text_path = os.path.join(result_img_dir, f"source_prompt.txt")
    with open(source_text_path, 'w') as file:
        file.write(source_prompt + '\n')

    images = [source_img] + images

    fs=3
    n = len(images)
    fig, ax = plt.subplots(1, n, figsize=(n*fs, 1*fs))

    for i, img in enumerate(images):
        ax[i].imshow(img)

    ax[0].set_title('source')
    ax[1].set_title(source_prompt, fontsize=7)
    ax[2].set_title(target_prompt, fontsize=7)

    overall_img_path = os.path.join(result_img_dir, f"overall.png")
    plt.savefig(overall_img_path, bbox_inches='tight')
    plt.close()
    
    mask_save_dir = os.path.join(result_img_dir, f"mask")
    os.makedirs(mask_save_dir, exist_ok=True)

    if use_ca_mask:
        ca_mask_path = os.path.join(mask_save_dir, f"mask_ca.png")
        mask_img = Image.fromarray((callback_fn.mask.cpu().float().numpy() * 255).astype(np.uint8)).convert('L')
        mask_img.save(ca_mask_path)

    del inv_latents
    del init_latent
    gc.collect()
    torch.cuda.empty_cache()

if __name__ == '__main__':
    main(args)