File size: 23,617 Bytes
f056744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
from diffusers import (FlowMatchEulerDiscreteScheduler,
                       FlowMatchHeunDiscreteScheduler)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor


@dataclass
class FlowMatchHeunDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.FloatTensor


class FlowMatchEulerDiscreteBackwardScheduler(FlowMatchEulerDiscreteScheduler):
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        shift: float = 1.0,
        use_dynamic_shifting=False,
        base_shift: Optional[float] = 0.5,
        max_shift: Optional[float] = 1.15,
        base_image_seq_len: Optional[int] = 256,
        max_image_seq_len: Optional[int] = 4096,
        margin_index_from_noise: int = 3,
        margin_index_from_image: int = 1,
        intermediate_steps=None
    ):
        super().__init__(
            num_train_timesteps=num_train_timesteps,
            shift=shift,
            use_dynamic_shifting=use_dynamic_shifting,
            base_shift=base_shift,
            max_shift=max_shift,
            base_image_seq_len=base_image_seq_len,
            max_image_seq_len=max_image_seq_len,
        )
        self.margin_index_from_noise = margin_index_from_noise
        self.margin_index_from_image = margin_index_from_image
        self.intermediate_steps = intermediate_steps

    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        sigmas: Optional[List[float]] = None,
        mu: Optional[float] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """

        if self.config.use_dynamic_shifting and mu is None:
            raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")

        if sigmas is None:
            self.num_inference_steps = num_inference_steps
            timesteps = np.linspace(
                self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
            )

            sigmas = timesteps / self.config.num_train_timesteps

        if num_inference_steps is None:
            num_inference_steps = len(sigmas)

        if self.config.use_dynamic_shifting:
            sigmas = self.time_shift(mu, 1.0, sigmas)
        else:
            sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)

        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
        timesteps = sigmas * self.config.num_train_timesteps

        self.timesteps = torch.cat([timesteps, torch.zeros(1, device=timesteps.device)])
        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

        self.timesteps = self.timesteps.flip(0)
        self.sigmas = self.sigmas.flip(0)

        self.timesteps = self.timesteps[
            self.config.margin_index_from_image : num_inference_steps - self.config.margin_index_from_noise
        ]
        self.sigmas = self.sigmas[
            self.config.margin_index_from_image : num_inference_steps - self.config.margin_index_from_noise + 1
        ]

        if self.config.intermediate_steps is not None:
            # self.timesteps = torch.linspace(self.timesteps[0], self.timesteps[-1], self.config.intermediate_steps).to(self.timesteps.device)
            self.sigmas = torch.linspace(self.sigmas[0], self.sigmas[-1], self.config.intermediate_steps + 1).to(self.timesteps.device)
            self.timesteps = self.sigmas[:-1] * 1000


        self._step_index = None
        self._begin_index = None


class FlowMatchEulerDiscreteForwardScheduler(FlowMatchEulerDiscreteScheduler):
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        shift: float = 1.0,
        use_dynamic_shifting=False,
        base_shift: Optional[float] = 0.5,
        max_shift: Optional[float] = 1.15,
        base_image_seq_len: Optional[int] = 256,
        max_image_seq_len: Optional[int] = 4096,
        margin_index_from_noise: int = 3,
        margin_index_from_image: int = 0,
    ):
        super().__init__(
            num_train_timesteps=num_train_timesteps,
            shift=shift,
            use_dynamic_shifting=use_dynamic_shifting,
            base_shift=base_shift,
            max_shift=max_shift,
            base_image_seq_len=base_image_seq_len,
            max_image_seq_len=max_image_seq_len,
        )
        self.margin_index_from_noise = margin_index_from_noise
        self.margin_index_from_image = margin_index_from_image

    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        sigmas: Optional[List[float]] = None,
        mu: Optional[float] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """

        if self.config.use_dynamic_shifting and mu is None:
            raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")

        if sigmas is None:
            self.num_inference_steps = num_inference_steps
            timesteps = np.linspace(
                self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
            )

            sigmas = timesteps / self.config.num_train_timesteps

        if num_inference_steps is None:
            num_inference_steps = len(sigmas)

        if self.config.use_dynamic_shifting:
            sigmas = self.time_shift(mu, 1.0, sigmas)
        else:
            sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)

        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
        timesteps = sigmas * self.config.num_train_timesteps

        self.timesteps = timesteps.to(device=device)
        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

        self.timesteps = self.timesteps[
            self.config.margin_index_from_noise : num_inference_steps - self.config.margin_index_from_image
        ]
        self.sigmas = self.sigmas[
            self.config.margin_index_from_noise : num_inference_steps - self.config.margin_index_from_image + 1
        ]

        self._step_index = None
        self._begin_index = None



class FlowMatchHeunDiscreteForwardScheduler(FlowMatchHeunDiscreteScheduler):
    _compatibles = []
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        shift: float = 1.0,
        margin_index: int = 0,
        use_dynamic_shifting = False
    ):
        timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)

        sigmas = timesteps / num_train_timesteps
        sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)

        self.timesteps = sigmas * num_train_timesteps

        self._step_index = None
        self._begin_index = None

        self.sigmas = sigmas.to("cpu")  # to avoid too much CPU/GPU communication
        self.sigma_min = self.sigmas[-1].item()
        self.sigma_max = self.sigmas[0].item()
        
        self.use_dynamic_shifting = use_dynamic_shifting
        self.margin_index = margin_index

    def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
        return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)

    def set_timesteps(
        self, 
        num_inference_steps: int = None, 
        device: Union[str, torch.device] = None,
        sigmas: Optional[List[float]] = None,
        mu: Optional[float] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """


        if sigmas is None:
            self.num_inference_steps = num_inference_steps
            timesteps = np.linspace(
                self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
            )
            sigmas = timesteps / self.config.num_train_timesteps

        if self.config.use_dynamic_shifting:
            sigmas = self.time_shift(mu, 1.0, sigmas)
        else:
            sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)

        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)

        timesteps = sigmas * self.config.num_train_timesteps
        timesteps = timesteps[self.config.margin_index:]
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
        self.timesteps = timesteps.to(device=device)

        sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
        sigmas = sigmas[self.config.margin_index:]
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

        self._step_index = None
        self._begin_index = None

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or
                tuple.

        Returns:
            [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `HeunDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)
        
        if self.state_in_first_order:
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
        else:
            # 2nd order / Heun's method
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

        noise = randn_tensor(
            model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
        )

        eps = noise * s_noise
        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        if self.state_in_first_order:
            # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
            denoised = sample - model_output * sigma
            # 2. convert to an ODE derivative for 1st order
            derivative = (sample - denoised) / sigma_hat
            # 3. Delta timestep
            dt = sigma_next - sigma_hat

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
            denoised = sample - model_output * sigma_next
            # 2. 2nd order / Heun's method
            derivative = (sample - denoised) / sigma_next
            derivative = 0.5 * (self.prev_derivative + derivative)

            # 3. take prev timestep & sample
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return prev_sample


class FlowMatchHeunDiscreteBackwardScheduler(FlowMatchHeunDiscreteScheduler):
    _compatibles = []
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        shift: float = 1.0,
        margin_index: int = 0,
        use_dynamic_shifting = False
    ):
        timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)

        sigmas = timesteps / num_train_timesteps
        sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)

        self.timesteps = sigmas * num_train_timesteps

        self._step_index = None
        self._begin_index = None

        self.sigmas = sigmas.to("cpu")  # to avoid too much CPU/GPU communication
        self.sigma_min = self.sigmas[-1].item()
        self.sigma_max = self.sigmas[0].item()
        
        self.use_dynamic_shifting = use_dynamic_shifting
        self.margin_index = margin_index

    def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
        return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)

    def set_timesteps(
        self, 
        num_inference_steps: int = None, 
        device: Union[str, torch.device] = None,
        sigmas: Optional[List[float]] = None,
        mu: Optional[float] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """


        if sigmas is None:
            self.num_inference_steps = num_inference_steps
            timesteps = np.linspace(
                self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
            )
            sigmas = timesteps / self.config.num_train_timesteps

        if self.config.use_dynamic_shifting:
            sigmas = self.time_shift(mu, 1.0, sigmas)
        else:
            sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)

        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)

        timesteps = sigmas * self.config.num_train_timesteps
        timesteps = timesteps[self.config.margin_index:].flip(0)
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
        self.timesteps = timesteps.to(device=device)

        sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
        sigmas = sigmas[self.config.margin_index:].flip(0)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

        self._step_index = None
        self._begin_index = None


    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or
                tuple.

        Returns:
            [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `HeunDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)
        
        if self.state_in_first_order:
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
        else:
            # 2nd order / Heun's method
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
        
        if sigma == 0:
            prev_sample = sample + (sigma_next - sigma) * model_output
            prev_sample = prev_sample.to(model_output.dtype)

            # upon completion increase step index by one
            self._step_index += 2

            if not return_dict:
                return (prev_sample,)

            return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)


        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

        noise = randn_tensor(
            model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
        )

        eps = noise * s_noise
        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        if self.state_in_first_order:
            # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
            denoised = sample - model_output * sigma
            # 2. convert to an ODE derivative for 1st order
            derivative = (sample - denoised) / sigma_hat
            # 3. Delta timestep
            dt = sigma_next - sigma_hat

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
            denoised = sample - model_output * sigma_next
            # 2. 2nd order / Heun's method
            derivative = (sample - denoised) / sigma_next
            derivative = 0.5 * (self.prev_derivative + derivative)

            # 3. take prev timestep & sample
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)