Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,617 Bytes
f056744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers import (FlowMatchEulerDiscreteScheduler,
FlowMatchHeunDiscreteScheduler)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
@dataclass
class FlowMatchHeunDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class FlowMatchEulerDiscreteBackwardScheduler(FlowMatchEulerDiscreteScheduler):
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
use_dynamic_shifting=False,
base_shift: Optional[float] = 0.5,
max_shift: Optional[float] = 1.15,
base_image_seq_len: Optional[int] = 256,
max_image_seq_len: Optional[int] = 4096,
margin_index_from_noise: int = 3,
margin_index_from_image: int = 1,
intermediate_steps=None
):
super().__init__(
num_train_timesteps=num_train_timesteps,
shift=shift,
use_dynamic_shifting=use_dynamic_shifting,
base_shift=base_shift,
max_shift=max_shift,
base_image_seq_len=base_image_seq_len,
max_image_seq_len=max_image_seq_len,
)
self.margin_index_from_noise = margin_index_from_noise
self.margin_index_from_image = margin_index_from_image
self.intermediate_steps = intermediate_steps
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[float] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if self.config.use_dynamic_shifting and mu is None:
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
if sigmas is None:
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
sigmas = timesteps / self.config.num_train_timesteps
if num_inference_steps is None:
num_inference_steps = len(sigmas)
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
else:
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps
self.timesteps = torch.cat([timesteps, torch.zeros(1, device=timesteps.device)])
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self.timesteps = self.timesteps.flip(0)
self.sigmas = self.sigmas.flip(0)
self.timesteps = self.timesteps[
self.config.margin_index_from_image : num_inference_steps - self.config.margin_index_from_noise
]
self.sigmas = self.sigmas[
self.config.margin_index_from_image : num_inference_steps - self.config.margin_index_from_noise + 1
]
if self.config.intermediate_steps is not None:
# self.timesteps = torch.linspace(self.timesteps[0], self.timesteps[-1], self.config.intermediate_steps).to(self.timesteps.device)
self.sigmas = torch.linspace(self.sigmas[0], self.sigmas[-1], self.config.intermediate_steps + 1).to(self.timesteps.device)
self.timesteps = self.sigmas[:-1] * 1000
self._step_index = None
self._begin_index = None
class FlowMatchEulerDiscreteForwardScheduler(FlowMatchEulerDiscreteScheduler):
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
use_dynamic_shifting=False,
base_shift: Optional[float] = 0.5,
max_shift: Optional[float] = 1.15,
base_image_seq_len: Optional[int] = 256,
max_image_seq_len: Optional[int] = 4096,
margin_index_from_noise: int = 3,
margin_index_from_image: int = 0,
):
super().__init__(
num_train_timesteps=num_train_timesteps,
shift=shift,
use_dynamic_shifting=use_dynamic_shifting,
base_shift=base_shift,
max_shift=max_shift,
base_image_seq_len=base_image_seq_len,
max_image_seq_len=max_image_seq_len,
)
self.margin_index_from_noise = margin_index_from_noise
self.margin_index_from_image = margin_index_from_image
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[float] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if self.config.use_dynamic_shifting and mu is None:
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
if sigmas is None:
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
sigmas = timesteps / self.config.num_train_timesteps
if num_inference_steps is None:
num_inference_steps = len(sigmas)
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
else:
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps
self.timesteps = timesteps.to(device=device)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self.timesteps = self.timesteps[
self.config.margin_index_from_noise : num_inference_steps - self.config.margin_index_from_image
]
self.sigmas = self.sigmas[
self.config.margin_index_from_noise : num_inference_steps - self.config.margin_index_from_image + 1
]
self._step_index = None
self._begin_index = None
class FlowMatchHeunDiscreteForwardScheduler(FlowMatchHeunDiscreteScheduler):
_compatibles = []
order = 2
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
margin_index: int = 0,
use_dynamic_shifting = False
):
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
sigmas = timesteps / num_train_timesteps
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
self.timesteps = sigmas * num_train_timesteps
self._step_index = None
self._begin_index = None
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.sigma_min = self.sigmas[-1].item()
self.sigma_max = self.sigmas[0].item()
self.use_dynamic_shifting = use_dynamic_shifting
self.margin_index = margin_index
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[float] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if sigmas is None:
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
sigmas = timesteps / self.config.num_train_timesteps
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
else:
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps
timesteps = timesteps[self.config.margin_index:]
timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
self.timesteps = timesteps.to(device=device)
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
sigmas = sigmas[self.config.margin_index:]
self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])
# empty dt and derivative
self.prev_derivative = None
self.dt = None
self._step_index = None
self._begin_index = None
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
s_churn (`float`):
s_tmin (`float`):
s_tmax (`float`):
s_noise (`float`, defaults to 1.0):
Scaling factor for noise added to the sample.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `HeunDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._init_step_index(timestep)
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
if self.state_in_first_order:
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
else:
# 2nd order / Heun's method
sigma = self.sigmas[self.step_index - 1]
sigma_next = self.sigmas[self.step_index]
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
noise = randn_tensor(
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
)
eps = noise * s_noise
sigma_hat = sigma * (gamma + 1)
if gamma > 0:
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
if self.state_in_first_order:
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
denoised = sample - model_output * sigma
# 2. convert to an ODE derivative for 1st order
derivative = (sample - denoised) / sigma_hat
# 3. Delta timestep
dt = sigma_next - sigma_hat
# store for 2nd order step
self.prev_derivative = derivative
self.dt = dt
self.sample = sample
else:
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
denoised = sample - model_output * sigma_next
# 2. 2nd order / Heun's method
derivative = (sample - denoised) / sigma_next
derivative = 0.5 * (self.prev_derivative + derivative)
# 3. take prev timestep & sample
dt = self.dt
sample = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
self.prev_derivative = None
self.dt = None
self.sample = None
prev_sample = sample + derivative * dt
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return prev_sample
class FlowMatchHeunDiscreteBackwardScheduler(FlowMatchHeunDiscreteScheduler):
_compatibles = []
order = 2
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
margin_index: int = 0,
use_dynamic_shifting = False
):
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
sigmas = timesteps / num_train_timesteps
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
self.timesteps = sigmas * num_train_timesteps
self._step_index = None
self._begin_index = None
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.sigma_min = self.sigmas[-1].item()
self.sigma_max = self.sigmas[0].item()
self.use_dynamic_shifting = use_dynamic_shifting
self.margin_index = margin_index
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[float] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if sigmas is None:
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
sigmas = timesteps / self.config.num_train_timesteps
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
else:
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps
timesteps = timesteps[self.config.margin_index:].flip(0)
timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
self.timesteps = timesteps.to(device=device)
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
sigmas = sigmas[self.config.margin_index:].flip(0)
self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])
# empty dt and derivative
self.prev_derivative = None
self.dt = None
self._step_index = None
self._begin_index = None
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
s_churn (`float`):
s_tmin (`float`):
s_tmax (`float`):
s_noise (`float`, defaults to 1.0):
Scaling factor for noise added to the sample.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `HeunDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._init_step_index(timestep)
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
if self.state_in_first_order:
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
else:
# 2nd order / Heun's method
sigma = self.sigmas[self.step_index - 1]
sigma_next = self.sigmas[self.step_index]
if sigma == 0:
prev_sample = sample + (sigma_next - sigma) * model_output
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 2
if not return_dict:
return (prev_sample,)
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
noise = randn_tensor(
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
)
eps = noise * s_noise
sigma_hat = sigma * (gamma + 1)
if gamma > 0:
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
if self.state_in_first_order:
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
denoised = sample - model_output * sigma
# 2. convert to an ODE derivative for 1st order
derivative = (sample - denoised) / sigma_hat
# 3. Delta timestep
dt = sigma_next - sigma_hat
# store for 2nd order step
self.prev_derivative = derivative
self.dt = dt
self.sample = sample
else:
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
denoised = sample - model_output * sigma_next
# 2. 2nd order / Heun's method
derivative = (sample - denoised) / sigma_next
derivative = 0.5 * (self.prev_derivative + derivative)
# 3. take prev timestep & sample
dt = self.dt
sample = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
self.prev_derivative = None
self.dt = None
self.sample = None
prev_sample = sample + derivative * dt
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) |