File size: 4,809 Bytes
f056744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import base64
import difflib
import json
import os

import diffusers
import numpy as np
import requests
import torch
import torch.nn.functional as F
import transformers
from diffusers import (AutoencoderKL, DiffusionPipeline,
                       FlowMatchEulerDiscreteScheduler, FluxPipeline,
                       FluxTransformer2DModel, SD3Transformer2DModel,
                       StableDiffusion3Pipeline)
from diffusers.callbacks import PipelineCallback
from torchao.quantization import int8_weight_only, quantize_
from torchvision import transforms
from transformers import (AutoModelForCausalLM, AutoProcessor, CLIPTextModel,
                          CLIPTextModelWithProjection, T5EncoderModel)


def get_flux_pipeline(
    model_id="black-forest-labs/FLUX.1-dev",
    pipeline_class=FluxPipeline,
    torch_dtype=torch.bfloat16, 
    quantize=False
):
    ############ Diffusion Transformer ############
    transformer = FluxTransformer2DModel.from_pretrained(
        model_id, subfolder="transformer", torch_dtype=torch_dtype
    )

    ############ Text Encoder ############
    text_encoder = CLIPTextModel.from_pretrained(
        model_id, subfolder="text_encoder", torch_dtype=torch_dtype
    )

    ############ Text Encoder 2 ############
    text_encoder_2 = T5EncoderModel.from_pretrained(
        model_id, subfolder="text_encoder_2", torch_dtype=torch_dtype
    )

    ############ VAE ############
    vae = AutoencoderKL.from_pretrained(
        model_id, subfolder="vae", torch_dtype=torch_dtype
    )

    if quantize:
        quantize_(transformer, int8_weight_only())
        quantize_(text_encoder, int8_weight_only())
        quantize_(text_encoder_2, int8_weight_only())
        quantize_(vae, int8_weight_only())

    # Initialize the pipeline now.
    pipe = pipeline_class.from_pretrained(
        model_id, 
        transformer=transformer, 
        vae=vae,
        text_encoder=text_encoder, 
        text_encoder_2=text_encoder_2, 
        torch_dtype=torch_dtype
    )
    return pipe

def mask_decode(encoded_mask,image_shape=[512,512]):
    length=image_shape[0]*image_shape[1]
    mask_array=np.zeros((length,))
    
    for i in range(0,len(encoded_mask),2):
        splice_len=min(encoded_mask[i+1],length-encoded_mask[i])
        for j in range(splice_len):
            mask_array[encoded_mask[i]+j]=1
            
    mask_array=mask_array.reshape(image_shape[0], image_shape[1])
    # to avoid annotation errors in boundary
    mask_array[0,:]=1
    mask_array[-1,:]=1
    mask_array[:,0]=1
    mask_array[:,-1]=1
            
    return mask_array

def mask_interpolate(mask, size=128):
    mask = torch.tensor(mask)
    mask = F.interpolate(mask[None, None, ...], size, mode='bicubic')
    mask = mask.squeeze()
    return mask    

def get_blend_word_index(prompt, word, tokenizer):
    input_ids = tokenizer(prompt).input_ids
    blend_ids = tokenizer(word, add_special_tokens=False).input_ids

    index = []
    for i, id in enumerate(input_ids):
        # Ignore common token
        if id < 100:
            continue
        if id in blend_ids:
            index.append(i)
            
    return index

def find_token_id_differences(prompt1, prompt2, tokenizer):
    # Tokenize inputs and get input IDs
    tokens1 = tokenizer.encode(prompt1, add_special_tokens=False)
    tokens2 = tokenizer.encode(prompt2, add_special_tokens=False)
    
    # Get sequence matcher output
    seq_matcher = difflib.SequenceMatcher(None, tokens1, tokens2)

    diff1_indices, diff1_ids = [], []
    diff2_indices, diff2_ids = [], []

    for opcode, a_start, a_end, b_start, b_end in seq_matcher.get_opcodes():
        if opcode in ['replace', 'delete']:
            diff1_indices.extend(range(a_start, a_end))
            diff1_ids.extend(tokens1[a_start:a_end])
        if opcode in ['replace', 'insert']:
            diff2_indices.extend(range(b_start, b_end))
            diff2_ids.extend(tokens2[b_start:b_end])

    return {
        'prompt_1': {'index': diff1_indices, 'id': diff1_ids},
        'prompt_2': {'index': diff2_indices, 'id': diff2_ids}
    }

def find_word_token_indices(prompt, word, tokenizer):
    # Tokenize with offsets to track word positions
    encoding = tokenizer(prompt, return_offsets_mapping=True, add_special_tokens=False)
    tokens = encoding.tokens()
    offsets = encoding.offset_mapping  # Start and end positions of tokens in the original text

    word_indices = []
    
    # Normalize the word for comparison
    word_tokens = tokenizer(word, add_special_tokens=False).tokens()

    # Find matching token sequences
    for i in range(len(tokens) - len(word_tokens) + 1):
        if tokens[i : i + len(word_tokens)] == word_tokens:
            word_indices.extend(range(i, i + len(word_tokens)))

    return word_indices