ReFlex / src /attn_utils /attn_utils.py
SahilCarterr's picture
Upload 77 files
f056744 verified
import abc
import gc
import math
import numbers
from collections import defaultdict
from difflib import SequenceMatcher
from typing import Dict, List, Optional, Tuple, Union
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention_processor import FluxAttnProcessor2_0
from PIL import Image
from scipy.ndimage import binary_dilation
from skimage.filters import threshold_otsu
class AttentionControl(abc.ABC):
def __init__(self,):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
self.get_model_info()
def get_model_info(self):
t5_dim = 512
latent_dim = 4096
attn_dim = t5_dim + latent_dim
index_all = torch.arange(attn_dim)
t5_index, latent_index = index_all.split([t5_dim, latent_dim])
patch_order = ['t5', 'latent']
self.model_info = {
't5_dim': t5_dim,
'latent_dim': latent_dim,
'attn_dim': attn_dim,
't5_index': t5_index,
'latent_index': latent_index,
'patch_order': patch_order
}
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@abc.abstractmethod
def forward(self, q, k, v, place_in_transformer: str):
raise NotImplementedError
@torch.no_grad()
def __call__(self, q, k, v, place_in_transformer: str):
hs = self.forward(q, k, v, place_in_transformer)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return hs
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def scaled_dot_product_attention(self, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight
def split_attn(self, attn, q='latent', k='latent'):
patch_order = self.model_info['patch_order']
t5_dim = self.model_info['t5_dim']
latent_dim = self.model_info['latent_dim']
clip_dim = self.model_info.get('clip_dim', None)
idx_q = patch_order.index(q)
idx_k = patch_order.index(k)
split = [t5_dim, latent_dim]
return attn.split(split, dim=-2)[idx_q].split(split, dim=-1)[idx_k].clone()
class AttentionAdapter(AttentionControl):
def __init__(
self,
ca_layer_list=list(range(13,45)),
sa_layer_list=list(range(22,45)),
method='replace_topk',
topk=1,
text_scale=1,
mappers=None,
alphas=None,
ca_steps=10,
sa_steps=7,
save_source_ca=False,
save_target_ca=False,
use_sa_replace=True,
attn_adj_from=0,
):
super(AttentionAdapter, self).__init__()
self.ca_layer_list = ca_layer_list
self.sa_layer_list = sa_layer_list
self.method = method
self.topk = topk
self.text_scale = text_scale
self.use_sa_replace = use_sa_replace
self.ca_steps = ca_steps
self.sa_steps = sa_steps
self.mappers = mappers
self.alphas = alphas
self.save_source_ca = save_source_ca
self.save_target_ca = save_target_ca
self.attn_adj_from = attn_adj_from
self.source_ca = None
self.source_attn = {}
@staticmethod
def get_empty_store():
return defaultdict(list)
def refine_ca(self, source_ca, target_ca):
source_ca_replace = source_ca[:, :, self.mappers].permute(2, 0, 1, 3)
new_ca = source_ca_replace * self.alphas + target_ca * (1 - self.alphas) * self.text_scale
return new_ca
def replace_ca(self, source_ca, target_ca):
new_ca = torch.einsum('hpw,bwn->bhpn', source_ca, self.mappers)
return new_ca
def get_index_from_source(self, attn, topk):
if self.method == 'replace_topk':
sa_max = torch.topk(attn, k=topk, dim=-1)[0][..., [-1]]
idx_from_source = (attn > sa_max)
elif self.method == 'replace_z':
log_attn = torch.log(attn)
idx_from_source = log_attn > (log_attn.mean(-1, keepdim=True) + self.z_value * log_attn.std(-1, keepdim=True))
else:
print("No method")
return idx_from_source
def forward(self, q, k, v, place_in_transformer: str):
layer_index = int(place_in_transformer.split('_')[-1])
use_ca_replace = False
use_sa_replace = False
if (layer_index in self.ca_layer_list) and (self.cur_step in range(0, self.ca_steps)):
if self.mappers is not None:
use_ca_replace = True
if (layer_index in self.sa_layer_list) and (self.cur_step in range(0, self.sa_steps)):
use_sa_replace = True
if not (use_sa_replace or use_ca_replace):
return F.scaled_dot_product_attention(q, k, v)
latent_index = self.model_info['latent_index']
t5_index = self.model_info['t5_index']
clip_index = self.model_info.get('clip_index', None)
# Get attention map first
attn = self.scaled_dot_product_attention(q, k, v)
source_attn = attn[:1]
target_attn = attn[1:]
source_hs = source_attn @ v[:1]
source_ca = self.split_attn(source_attn, 'latent', 't5')
target_ca = self.split_attn(target_attn, 'latent', 't5')
if use_ca_replace:
if self.save_source_ca:
if layer_index == self.ca_layer_list[0]:
self.source_ca = source_ca / source_ca.sum(dim=-1, keepdim=True)
else:
self.source_ca += source_ca / source_ca.sum(dim=-1, keepdim=True)
if self.save_target_ca:
if layer_index == self.ca_layer_list[0]:
self.target_ca = target_ca / target_ca.sum(dim=-1, keepdim=True)
else:
self.target_ca += target_ca / target_ca.sum(dim=-1, keepdim=True)
if self.alphas is None:
target_ca = self.replace_ca(source_ca[0], target_ca)
else:
target_ca = self.refine_ca(source_ca[0], target_ca)
target_sa = self.split_attn(target_attn, 'latent', 'latent')
if use_sa_replace:
if self.cur_step < self.attn_adj_from:
topk = 1
else:
topk = self.topk
if self.method == 'base':
new_sa = self.split_attn(target_attn, 'latent', 'latent')
else:
source_sa = self.split_attn(source_attn, 'latent', 'latent')
if topk <= 1:
new_sa = source_sa.clone().repeat(len(target_attn), 1, 1, 1)
else:
idx_from_source = self.get_index_from_source(source_sa, topk)
# Get top-k attention values from target SA
new_sa = target_sa.clone()
new_sa.mul_(idx_from_source)
# Normalize
new_sa.div_(new_sa.sum(-1,keepdim=True))
new_sa.nan_to_num_(0)
new_sa.mul_((source_sa * idx_from_source).sum(-1, keepdim=True))
# Get rest attention vlaues from source SA
new_sa.add_(source_sa * idx_from_source.logical_not())
# Additional normalize (Optional)
# new_sa.mul_((target_sa.sum(dim=(-1), keepdim=True) / new_sa.sum(dim=(-1), keepdim=True)))
target_sa = new_sa
target_l_to_l = target_sa @ v[1:, :, latent_index]
target_l_to_t = target_ca @ v[1:, :, t5_index]
if self.alphas is None:
target_latent_hs = target_l_to_l + target_l_to_t * self.text_scale
else:
# text scaling is already performed in self.refine_ca()
target_latent_hs = target_l_to_l + target_l_to_t
target_text_hs = target_attn[:,:, t5_index,:] @ v[1:]
target_hs = torch.cat([target_text_hs, target_latent_hs], dim=-2)
hs = torch.cat([source_hs, target_hs])
return hs
def reset(self):
super(AttentionAdapter, self).reset()
del self.source_attn
gc.collect()
torch.cuda.empty_cache()
self.source_attn = {}
class AttnCollector:
def __init__(self, transformer, controller, attn_processor_class, layer_list=[]):
self.transformer = transformer
self.controller = controller
self.attn_processor_class = attn_processor_class
def restore_orig_attention(self):
attn_procs = {}
place=''
for i, (name, attn_proc) in enumerate(self.transformer.attn_processors.items()):
attn_proc = self.attn_processor_class(
controller=None, place_in_transformer=place,
)
attn_procs[name] = attn_proc
self.transformer.set_attn_processor(attn_procs)
self.controller.num_att_layers = 0
def register_attention_control(self):
attn_procs = {}
count = 0
for i, (name, attn_proc) in enumerate(self.transformer.attn_processors.items()):
if 'single' in name:
place = f'single_{i}'
else:
place = f'joint_{i}'
count += 1
attn_proc = self.attn_processor_class(
controller=self.controller, place_in_transformer=place,
)
attn_procs[name] = attn_proc
self.transformer.set_attn_processor(attn_procs)
self.controller.num_att_layers = count