Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,44 @@
|
|
1 |
-
|
2 |
-
import streamlit as st
|
3 |
import os
|
4 |
-
import subprocess
|
5 |
import torchaudio
|
6 |
from speechbrain.pretrained import EncoderClassifier
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
with st.spinner("Downloading video..."):
|
13 |
-
if "youtube.com" in url or "youtu.be" in url:
|
14 |
-
os.system(f'yt-dlp -o input_video.mp4 "{url}"')
|
15 |
-
else:
|
16 |
-
os.system(f'wget -O input_video.mp4 "{url}"')
|
17 |
-
with st.spinner("Extracting audio..."):
|
18 |
-
os.system("ffmpeg -y -i input_video.mp4 -ar 16000 -ac 1 -vn audio.wav")
|
19 |
-
with st.spinner("Classifying accent..."):
|
20 |
-
accent_model = EncoderClassifier.from_hparams(
|
21 |
-
source="speechbrain/lang-id-commonlanguage_ecapa",
|
22 |
-
savedir="tmp_accent_model"
|
23 |
-
)
|
24 |
-
signal, fs = torchaudio.load("audio.wav")
|
25 |
-
if signal.shape[0] > 1:
|
26 |
-
signal = signal[0].unsqueeze(0)
|
27 |
-
prediction = accent_model.classify_batch(signal)
|
28 |
-
pred_label = prediction[3][0]
|
29 |
-
pred_scores = prediction[1][0]
|
30 |
-
confidence = float(pred_scores.max()) * 100
|
31 |
-
st.success(f"Predicted Accent: {pred_label} ({confidence:.1f}%)")
|
32 |
-
st.info(f"The model is {confidence:.0f}% confident this is a {pred_label} English accent.")
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import os
|
|
|
3 |
import torchaudio
|
4 |
from speechbrain.pretrained import EncoderClassifier
|
5 |
|
6 |
+
def accent_detect(video_file):
|
7 |
+
# Save uploaded video
|
8 |
+
if isinstance(video_file, tuple):
|
9 |
+
video_path = video_file[0]
|
10 |
+
else:
|
11 |
+
video_path = "uploaded_input.mp4"
|
12 |
+
with open(video_path, "wb") as f:
|
13 |
+
f.write(video_file.read())
|
14 |
+
|
15 |
+
# Extract audio
|
16 |
+
os.system(f"ffmpeg -y -i {video_path} -ar 16000 -ac 1 -vn audio.wav")
|
17 |
+
if not os.path.exists("audio.wav") or os.path.getsize("audio.wav") < 1000:
|
18 |
+
return "Audio extraction failed. Please check your file."
|
19 |
+
|
20 |
+
# Classify accent
|
21 |
+
accent_model = EncoderClassifier.from_hparams(
|
22 |
+
source="speechbrain/lang-id-commonlanguage_ecapa",
|
23 |
+
savedir="tmp_accent_model"
|
24 |
+
)
|
25 |
+
signal, fs = torchaudio.load("audio.wav")
|
26 |
+
if signal.shape[0] > 1:
|
27 |
+
signal = signal[0].unsqueeze(0)
|
28 |
+
prediction = accent_model.classify_batch(signal)
|
29 |
+
pred_label = prediction[3][0]
|
30 |
+
pred_scores = prediction[1][0]
|
31 |
+
confidence = float(pred_scores.max()) * 100
|
32 |
+
explanation = f"Predicted Accent: {pred_label} ({confidence:.1f}%)\nThe model is {confidence:.0f}% confident this is a {pred_label} English accent."
|
33 |
+
return explanation
|
34 |
+
|
35 |
+
demo = gr.Interface(
|
36 |
+
fn=accent_detect,
|
37 |
+
inputs=gr.Video(type="filepath", label="Upload a Video File (MP4, WEBM, etc.)"),
|
38 |
+
outputs="text",
|
39 |
+
title="🗣️ English Accent Classifier (Gradio Demo)",
|
40 |
+
description="Upload a short video clip of English speech. This tool predicts the English accent and confidence."
|
41 |
+
)
|
42 |
|
43 |
+
if __name__ == "__main__":
|
44 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|