File size: 27,381 Bytes
50e583f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210579
 
 
 
50e583f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e83bff
50e583f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5cbbc2
 
874d6f1
c5cbbc2
a7bc3a7
874d6f1
c5cbbc2
 
 
 
 
 
 
 
 
 
874d6f1
 
 
 
 
 
 
 
 
a7bc3a7
 
 
 
874d6f1
 
 
 
bb560ec
a7bc3a7
 
e567d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e83720
 
 
 
 
874d6f1
3e83720
874d6f1
 
6c5cac9
e707d1c
a33809c
874d6f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bc3a7
 
 
 
874d6f1
 
 
 
a7bc3a7
 
 
958e985
874d6f1
 
 
 
a7bc3a7
 
 
 
874d6f1
 
 
a7bc3a7
874d6f1
 
 
a6208be
a7bc3a7
 
 
874d6f1
 
 
 
a7bc3a7
 
 
 
874d6f1
 
 
a7bc3a7
 
 
 
 
 
 
cb59346
874d6f1
fd67525
 
 
21f77f5
 
 
 
280958f
 
 
fd67525
3e83720
 
50e583f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import gradio as gr
import os
import json
import asyncio
import concurrent.futures
from openai import AzureOpenAI
from trialgpt_retrieval.retriever import retrieve_trials_gpu, create_retriever_session
from nltk.tokenize import sent_tokenize
import nltk
import hashlib
import time
from functools import lru_cache
from threading import Lock

# Download required NLTK data
try:
    nltk.download('punkt')
    nltk.download('punkt_tab')
except Exception as e:
    print(f"Warning: Could not download NLTK data: {e}")

#set OPENAI_ENDPOINT and OPENAI_API_KEY
os.environ["OPENAI_ENDPOINT"] = "https://salma-mc65g33q-eastus2.services.ai.azure.com/"
os.environ["OPENAI_API_KEY"] = "1rGhyBRu7xrTwIUwySekgzJcFnURGiYlqlfVyjaTDebD22N2drDWJQQJ99BFACHYHv6XJ3w3AAAAACOGu5LU"

# Check environment variables
if not os.getenv("OPENAI_ENDPOINT") or not os.getenv("OPENAI_API_KEY"):
    print("Warning: OPENAI_ENDPOINT and OPENAI_API_KEY environment variables are required.")

# Initialize the Azure OpenAI client
client = AzureOpenAI(
    api_version="2023-09-01-preview",
    azure_endpoint=os.getenv("OPENAI_ENDPOINT"),
    api_key=os.getenv("OPENAI_API_KEY"),
)

# Global cache and locks for thread safety
cache = {}
cache_lock = Lock()
MAX_CACHE_SIZE = 1000

# Initialize persistent retriever session (major speedup)
print("Initializing GPU retriever session...")
retriever_session = create_retriever_session(use_gpu=True)
print("Retriever session ready!")

def get_cache_key(text):
    """Generate cache key from text."""
    return hashlib.md5(text.encode()).hexdigest()

def get_from_cache(key):
    """Thread-safe cache retrieval."""
    with cache_lock:
        return cache.get(key)

def set_cache(key, value):
    """Thread-safe cache storage with size limit."""
    with cache_lock:
        if len(cache) >= MAX_CACHE_SIZE:
            # Remove oldest entries (simple FIFO)
            oldest_keys = list(cache.keys())[:len(cache)//2]
            for old_key in oldest_keys:
                del cache[old_key]
        cache[key] = value

@lru_cache(maxsize=100)
def generate_keywords_cached(note_hash, note):
    """Cached keyword generation."""
    system = 'You are a helpful assistant and your task is to help search relevant clinical trials for a given patient description. Please first summarize the main medical problems of the patient. Then generate up to 32 key conditions for searching relevant clinical trials for this patient. The key condition list should be ranked by priority. Please output only a JSON dict formatted as Dict{{"summary": Str(summary), "conditions": List[Str(condition)]}}.'
    prompt = f"Here is the patient description: \\n{note}\\n\\nJSON output:"
    messages = [
        {"role": "system", "content": system},
        {"role": "user", "content": prompt}
    ]
    
    try:
        response = client.chat.completions.create(
            model="gpt-4", 
            messages=messages,
            temperature=0,
            max_tokens=2048,
        )

        output = response.choices[0].message.content
        if output is None:
            return "Error: Received empty response from the model.", []

        try:
            start = output.find('{')
            end = output.rfind('}')
            if start != -1 and end > start:
                json_output = output[start:end+1]
                data = json.loads(json_output)
                return data["summary"], data["conditions"]
            else:
                return "Error: No JSON found in model response.", []
        except (json.JSONDecodeError, KeyError) as e:
            return f"Error parsing model output: {e}", []
            
    except Exception as e:
        return f"Error calling OpenAI API: {e}", []

def generate_keywords(note):
    """Wrapper for cached keyword generation."""
    note_hash = get_cache_key(note)
    return generate_keywords_cached(note_hash, note)

def parse_criteria(criteria):
    output = ""
    criteria = criteria.split("\\n\\n")
    
    idx = 0
    for criterion in criteria:
        criterion = criterion.strip()
        if "inclusion criteria" in criterion.lower() or "exclusion criteria" in criterion.lower():
            continue
        if len(criterion) < 5:
            continue
        output += f"{idx}. {criterion}\\n" 
        idx += 1
    return output

def print_trial(trial_info: dict, inc_exc: str) -> str:
    trial = f"Title: {trial_info.get('title', 'N/A')}\\n"
    
    metadata = trial_info.get('metadata', {})
    diseases_list = metadata.get('diseases_list', [])
    drugs_list = metadata.get('drugs_list', [])
    
    trial += f"Target diseases: {', '.join(diseases_list) if diseases_list else 'N/A'}\\n"
    trial += f"Interventions: {', '.join(drugs_list) if drugs_list else 'N/A'}\\n"
    trial += f"Summary: {trial_info.get('text', 'N/A')}\\n"
    
    if inc_exc == "inclusion":
        inclusion_criteria = metadata.get('inclusion_criteria', 'No inclusion criteria available')
        trial += "Inclusion criteria:\\n %s\\n" % parse_criteria(inclusion_criteria)
    elif inc_exc == "exclusion":
        exclusion_criteria = metadata.get('exclusion_criteria', 'No exclusion criteria available')
        trial += "Exclusion criteria:\\n %s\\n" % parse_criteria(exclusion_criteria) 
    return trial

def get_matching_prompt(trial_info: dict, inc_exc: str, patient: str) -> tuple[str, str]:
    """Output the prompt."""
    prompt = f"You are a helpful assistant for clinical trial recruitment. Your task is to compare a given patient note and the {inc_exc} criteria of a clinical trial to determine the patient's eligibility at the criterion level.\\n"

    if inc_exc == "inclusion":
        prompt += "The factors that allow someone to participate in a clinical study are called inclusion criteria. They are based on characteristics such as age, gender, the type and stage of a disease, previous treatment history, and other medical conditions.\\n"
    elif inc_exc == "exclusion":
        prompt += "The factors that disqualify someone from participating are called exclusion criteria. They are based on characteristics such as age, gender, the type and stage of a disease, previous treatment history, and other medical conditions.\\n"

    prompt += f"You should check the {inc_exc} criteria one-by-one, and output the following three elements for each criterion:\\n"
    prompt += f"\\tElement 1. For each {inc_exc} criterion, briefly generate your reasoning process: First, judge whether the criterion is not applicable (not very common), where the patient does not meet the premise of the criterion. Then, check if the patient note contains direct evidence. If so, judge whether the patient meets or does not meet the criterion. If there is no direct evidence, try to infer from existing evidence, and answer one question: If the criterion is true, is it possible that a good patient note will miss such information? If impossible, then you can assume that the criterion is not true. Otherwise, there is not enough information.\\n"
    prompt += f"\\tElement 2. If there is relevant information, you must generate a list of relevant sentence IDs in the patient note. If there is no relevant information, you must annotate an empty list.\\n" 
    prompt += f"\\tElement 3. Classify the patient eligibility for this specific {inc_exc} criterion: "
    
    if inc_exc == "inclusion":
        prompt += 'the label must be chosen from {"not applicable", "not enough information", "included", "not included"}. "not applicable" should only be used for criteria that are not applicable to the patient. "not enough information" should be used where the patient note does not contain sufficient information for making the classification. Try to use as less "not enough information" as possible because if the note does not mention a medically important fact, you can assume that the fact is not true for the patient. "included" denotes that the patient meets the inclusion criterion, while "not included" means the reverse.\\n'
    elif inc_exc == "exclusion":
        prompt += 'the label must be chosen from {"not applicable", "not enough information", "excluded", "not excluded"}. "not applicable" should only be used for criteria that are not applicable to the patient. "not enough information" should be used where the patient note does not contain sufficient information for making the classification. Try to use as less "not enough information" as possible because if the note does not mention a medically important fact, you can assume that the fact is not true for the patient. "excluded" denotes that the patient meets the exclusion criterion and should be excluded in the trial, while "not excluded" means the reverse.\\n'
    
    prompt += "You should output only a JSON dict exactly formatted as: dict{str(criterion_number): list[str(element_1_brief_reasoning), list[int(element_2_sentence_id)], str(element_3_eligibility_label)]}."
    
    user_prompt = f"Here is the patient note, each sentence is led by a sentence_id:\\n{patient}\\n\\n" 
    user_prompt += f"Here is the clinical trial:\\n{print_trial(trial_info, inc_exc)}\\n\\n"
    user_prompt += f"Plain JSON output:"

    return prompt, user_prompt

def trialgpt_matching_single(trial: dict, patient: str, inc_exc: str, model: str):
    """Single matching call for parallel processing."""
    cache_key = get_cache_key(f"{trial.get('_id', '')}-{inc_exc}-{get_cache_key(patient)}")
    cached_result = get_from_cache(cache_key)
    if cached_result:
        return inc_exc, cached_result
    
    system_prompt, user_prompt = get_matching_prompt(trial, inc_exc, patient)
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt},
    ]
    
    try:
        response = client.chat.completions.create(
            model=model,
            messages=messages,
            temperature=0,
        )
        message = response.choices[0].message.content.strip()
        start = message.find('{')
        end = message.rfind('}')
        if start != -1 and end > start:
            message = message[start:end+1]
        
        result = json.loads(message)
        set_cache(cache_key, result)
        return inc_exc, result
    except (json.JSONDecodeError, TypeError, Exception) as e:
        result = {"error": f"Failed to parse model output: {e}", "raw": message if 'message' in locals() else "No response"}
        return inc_exc, result

def trialgpt_matching_parallel(trial: dict, patient: str, model: str):
    """Parallel processing of inclusion and exclusion criteria."""
    with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
        futures = [
            executor.submit(trialgpt_matching_single, trial, patient, "inclusion", model),
            executor.submit(trialgpt_matching_single, trial, patient, "exclusion", model)
        ]
        
        results = {}
        for future in concurrent.futures.as_completed(futures):
            try:
                inc_exc, result = future.result(timeout=30)  # 30 second timeout
                results[inc_exc] = result
            except concurrent.futures.TimeoutError:
                print(f"Timeout for trial matching")
                results[inc_exc] = {"error": "Timeout"}
            except Exception as e:
                print(f"Error in parallel matching: {e}")
                results[inc_exc] = {"error": str(e)}
    
    return results

# Load corpus once at startup
print("Loading corpus data...")
def load_corpus(corpus="sigir"):
    corpus_path = f"dataset/{corpus}/corpus.jsonl"
    corpus_map = {}
    with open(corpus_path, "r") as f:
        for line in f:
            entry = json.loads(line)
            corpus_map[entry["_id"]] = entry
    return corpus_map

corpus_data = load_corpus()
print(f"Corpus loaded with {len(corpus_data)} trials")

# --- Optimized Trial Ranking ---
eps = 1e-9

def get_matching_score(matching):
    included, not_inc, na_inc, no_info_inc = 0, 0, 0, 0
    excluded, not_exc, na_exc, no_info_exc = 0, 0, 0, 0
    
    if "inclusion" in matching:
        for criteria, info in matching["inclusion"].items():
            if len(info) == 3:
                if info[2] == "included": included += 1	
                elif info[2] == "not included": not_inc += 1
                elif info[2] == "not applicable": na_inc += 1
                elif info[2] == "not enough information": no_info_inc += 1
    
    if "exclusion" in matching:
        for criteria, info in matching["exclusion"].items():
            if len(info) == 3:
                if info[2] == "excluded": excluded += 1	
                elif info[2] == "not excluded": not_exc += 1
                elif info[2] == "not applicable": na_exc += 1
                elif info[2] == "not enough information": no_info_exc += 1

    score = 0
    if (included + not_inc + no_info_inc) > 0:
        score += included / (included + not_inc + no_info_inc + eps)
    if not_inc > 0: score -= 1
    if excluded > 0: score -= 1
    
    return score 

def get_clinical_trials(patient_details):
    start_time = time.time()
    
    # Check environment variables
    if not os.getenv("OPENAI_ENDPOINT") or not os.getenv("OPENAI_API_KEY"):
        return "**Error:** Please set OPENAI_ENDPOINT and OPENAI_API_KEY environment variables before using this app."
    
    if not patient_details or patient_details.strip() == "":
        return "**Error:** Please enter patient details."
    
    try:
        # Step 1: Generate keywords (cached)
        keyword_start = time.time()
        summary, conditions = generate_keywords(patient_details)
        keyword_time = time.time() - keyword_start
        
        if isinstance(summary, str) and summary.startswith("Error"):
            return f"**Error:** {summary}"
        
        if not conditions:
            return "## No Conditions Identified\n\nUnable to identify medical conditions from the patient description."

        # Step 2: Fast GPU-accelerated trial retrieval
        retrieval_start = time.time()
        retrieved_nctids = retrieve_trials_gpu(
            conditions, 
            corpus="sigir", 
            top_k=5, 
            use_gpu=True, 
            retriever=retriever_session  # Use persistent session
        )
        retrieval_time = time.time() - retrieval_start
        
        if not retrieved_nctids:
            return "## No Matching Clinical Trials Found\n\nNo clinical trials were found matching the patient's conditions."
        
        # Step 3: Preprocess patient data once
        processing_start = time.time()
        sents = sent_tokenize(patient_details)
        sents.append("The patient will provide informed consent, and will comply with the trial protocol without any practical issues.")
        patient_processed = "\\n".join([f"{idx}. {sent}" for idx, sent in enumerate(sents)])
        processing_time = time.time() - processing_start

        # Step 4: Parallel trial matching
        matching_start = time.time()
        results = []
        
        # Process trials in parallel batches
        with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
            future_to_nctid = {
                executor.submit(
                    trialgpt_matching_parallel, 
                    corpus_data[nctid], 
                    patient_processed, 
                    "gpt-4"
                ): nctid 
                for nctid in retrieved_nctids[:5] 
                if nctid in corpus_data
            }
            
            for future in concurrent.futures.as_completed(future_to_nctid):
                nctid = future_to_nctid[future]
                try:
                    matching_result = future.result(timeout=60)  # 60 second timeout per trial
                    score = get_matching_score(matching_result)
                    title = corpus_data[nctid].get('title', 'Unknown Title')
                    results.append({"title": title, "nctid": nctid, "score": score})
                except Exception as e:
                    print(f"Warning: Error processing trial {nctid}: {e}")
                    continue
        
        matching_time = time.time() - matching_start

        # Step 5: Sort and format results
        results.sort(key=lambda x: x["score"], reverse=True)
        
        total_time = time.time() - start_time
        
        # Format output
        output_str = f"## Matching Clinical Trials\n\n"
        output_str += f"*Processing time: {total_time:.1f}s (Keywords: {keyword_time:.1f}s, Retrieval: {retrieval_time:.1f}s, Matching: {matching_time:.1f}s)*\n\n"
        output_str += "| Rank | Trial | NCT ID | Summary | Score | Link |\n"
        output_str += "|------|-------|--------|---------|-------|------|\n"
        
        for rank, res in enumerate(results):
            trial_info = corpus_data.get(res['nctid'], {})
            metadata = trial_info.get('metadata', {})
            brief_summary = metadata.get('brief_summary', 'No summary available')
            
            if len(brief_summary) > 100:
                brief_summary = brief_summary[:97] + "..."
            
            colors = ["🟒", "🟑", "🟠", "πŸ”΄", "⚫"]
            color = colors[min(rank, len(colors)-1)]
            
            ct_link = f"https://clinicaltrials.gov/study/{res['nctid']}"
            output_str += f"| {color} {rank+1} | {res['title']} | {res['nctid']} | {brief_summary} | {res['score']:.2f} | [View Trial]({ct_link}) |\n"
            
        return output_str
        
    except Exception as e:
        return f"**Error:** An unexpected error occurred: {str(e)}"

if __name__ == "__main__":
    def chat_function(message, history):
        return get_clinical_trials(message)


    # Create optimized chatbot with simple, reliable CSS
    with gr.Blocks(theme=gr.themes.Soft(), fill_height=False) as demo:
        # Add simple CSS for styling with black text
        gr.HTML("""
    <script>
    window.addEventListener('load', function() {
        setTimeout(function() {
            // Force a browser repaint by changing a style temporarily
            document.body.style.paddingTop = '1px';
            document.body.offsetHeight; // trigger reflow
            document.body.style.paddingTop = null;
        }, 500); // wait for HF banner + app to load
    });
    </script>
        <style>
        .workflow-card {
            background: linear-gradient(135deg, #f0f9ff, #e0f2fe);
            border: 2px solid #3b82f6;
            border-radius: 12px;
            padding: 15px;
            margin: 8px;
            text-align: center;
            box-shadow: 0 3px 6px rgba(0,0,0,0.1);
            color: #000000 !important;
        }
        .workflow-card * {
            color: #000000 !important;
        }
        .workflow-card-1 { background: linear-gradient(135deg, #fef3c7, #fde68a); border-color: #f59e0b; }
        .workflow-card-2 { background: linear-gradient(135deg, #ddd6fe, #c4b5fd); border-color: #8b5cf6; }
        .workflow-card-3 { background: linear-gradient(135deg, #bfdbfe, #93c5fd); border-color: #3b82f6; }
        .workflow-card-4 { background: linear-gradient(135deg, #fa9d5a, #c9793e); border-color: #ea580c; }
        .workflow-card-5 { background: linear-gradient(135deg, #bbf7d0, #86efac); border-color: #10b981; }
        .workflow-card-6 { background: linear-gradient(135deg, #fecaca, #fca5a5); border-color: #ef4444; }
        
        /* Compact table styling */
        .gr-markdown table {
            font-size: 0.8em !important;
            margin: 10px 0 !important;
        }
        .gr-markdown table th,
        .gr-markdown table td {
            padding: 4px 6px !important;
            text-align: left !important;
            vertical-align: top !important;
            word-wrap: break-word !important;
            max-width: 150px !important;
        }
        .gr-markdown table th:nth-child(1),
        .gr-markdown table td:nth-child(1) {
            max-width: 40px !important;
        }
        .gr-markdown table th:nth-child(3),
        .gr-markdown table td:nth-child(3) {
            max-width: 80px !important;
        }
        .gr-markdown table th:nth-child(5),
        .gr-markdown table td:nth-child(5) {
            max-width: 50px !important;
        }
        .gr-markdown table th:nth-child(6),
        .gr-markdown table td:nth-child(6) {
            max-width: 70px !important;
        }
                
        .scroll-container {
            max-height: 90vh;
            overflow-y: auto;
            padding-right: 10px;}
        </style>
        <div class="scroll-container">
        """)
        
        gr.Markdown("# πŸ₯ Clinical Trial Matching Chatbot")
        gr.Markdown("**AI-Powered Clinical Trial Matching.** Describe a patient's condition to find matching trials quickly β€” even when running on CPU only, the system maintains fast response times.")
        
        gr.Markdown("## About the Tool")
        gr.Markdown("""
        This AI-powered tool is designed to support **Patient Recruitment & Enrollment** by retrieving the most relevant clinical trials based on a given patient case. It is built on top of a large language model fine-tuned on clinical trial metadata, including summaries, inclusion/exclusion criteria, drugs, and target diseases. The dataset includes several actively recruiting Pfizer trials.
        """)
        
        gr.Markdown("## How It Works")
        gr.Markdown("""
        Users input a patient case describing clinical history and findings. The model then identifies and ranks the **top 5 most relevant clinical trials** based on semantic similarity, helping clinicians quickly assess suitable enrollment options.
        """)
        
        gr.Markdown("## Workflow")
        
        # Row 1: Steps 1-3
        with gr.Row():
            with gr.Column():
                gr.Markdown("""
                <div style="background: linear-gradient(135deg, #fef3c7, #fde68a); border: 2px solid #f59e0b; border-radius: 12px; padding: 15px; text-align: center; margin: 5px; color: #000000 !important;">
                <div style="font-size: 2em; color: #000000 !important;">πŸ“</div>
                <strong style="color: #000000 !important;">1. Enter Patient Summary</strong><br>
                <small style="color: #000000 !important;">Describe the patient's history and findings.</small>
                </div>
                """)
            with gr.Column():
                gr.Markdown("""
                <div style="background: linear-gradient(135deg, #ddd6fe, #c4b5fd); border: 2px solid #8b5cf6; border-radius: 12px; padding: 15px; text-align: center; margin: 5px; color: #000000 !important;">
                <div style="font-size: 2em; color: #000000 !important;">πŸ”‘</div>
                <strong style="color: #000000 !important;">2. Keyword Extraction</strong><br>
                <small style="color: #000000 !important;">LLM model extracts key medical conditions.</small>
                </div>
                """)
            with gr.Column():
                gr.Markdown("""
                <div style="background: linear-gradient(135deg, #bfdbfe, #93c5fd); border: 2px solid #3b82f6; border-radius: 12px; padding: 15px; text-align: center; margin: 5px; color: #000000 !important;">
                <div style="font-size: 2em; color: #000000 !important;">πŸ”Ž</div>
                <strong style="color: #000000 !important;">3. Trial Retrieval</strong><br>
                <small style="color: #000000 !important;">Keywords are matched to all trials (including Pfizer).</small>
                </div>
                """)
        
        # Row 2: Steps 4-6
        with gr.Row():
            with gr.Column():
                gr.Markdown("""
                <div style="background: linear-gradient(135deg, #fa9d5a, #c9793e); border: 2px solid #ea580c; border-radius: 12px; padding: 15px; text-align: center; margin: 5px; color: #000000 !important;">
                <div style="font-size: 2em; color: #000000 !important;">βš™οΈ</div>
                <strong style="color: #000000 !important;">4. Data Processing</strong><br>
                <small style="color: #000000 !important;">Patient data is tokenized and preprocessed for analysis.</small>
                </div>
                """)
            with gr.Column():
                gr.Markdown("""
                <div style="background: linear-gradient(135deg, #bbf7d0, #86efac); border: 2px solid #10b981; border-radius: 12px; padding: 15px; text-align: center; margin: 5px; color: #000000 !important;">
                <div style="font-size: 2em; color: #000000 !important;">βœ…</div>
                <strong style="color: #000000 !important;">5. Eligibility Check</strong><br>
                <small style="color: #000000 !important;">Inclusion/exclusion criteria are checked in parallel.</small>
                </div>
                """)
            with gr.Column():
                gr.Markdown("""
                <div style="background: linear-gradient(135deg, #fecaca, #fca5a5); border: 2px solid #ef4444; border-radius: 12px; padding: 15px; text-align: center; margin: 5px; color: #000000 !important;">
                <div style="font-size: 2em; color: #000000 !important;">πŸ†</div>
                <strong style="color: #000000 !important;">6. Ranking & Results</strong><br>
                <small style="color: #000000 !important;">Top 5 matching trials are scored and displayed.</small>
                </div>
                """)
        
        gr.Markdown("## Start Matching")
        chatbot = gr.ChatInterface(
            fn=chat_function,
            examples=[
                ["A 28-year-old non-pregnant female, otherwise healthy, presents to a community clinic to explore enrollment in a COVID-19 booster study. She completed her primary 2-dose Moderna series 5 months ago, has not received any other COVID vaccines since, and reports no history of vaccine-related side effects. Her most recent SARS-CoV-2 test today was negative. She reports consistent oral contraceptive use for over 6 months and denies any significant past medical history. She is willing to abstain from blood donation and complies with all study guidelines."],
                ["19-year-old pregnant patient, receiving prenatal care at Johns Hopkins Hospital, is 28 weeks gestation and preparing to receive her first mRNA COVID-19 vaccine dose. She has no previous history of COVID-19 and no significant medical history. She meets eligibility criteria and is interested in contributing to research on pregnancy and vaccine-related immune responses."],
                ["A 67-year-old male with relapsed/refractory multiple myeloma presents for enrollment into a post-trial access study. He previously participated in a Pfizer-sponsored parent study evaluating elranatamab, during which he achieved a partial response and remained clinically stable. At the time the parent trial ended, he was continuing on elranatamab with no evidence of disease progression or significant toxicity. He reports no history of psychiatric illness or lab abnormalities, and he wishes to continue treatment through this access program."]
            ],
            title="Clinical Trial Matching Chatbot",
            fill_height=True,
            fill_width=True,
        )
    gr.HTML("</div>")

    demo.launch(share=True)