File size: 6,441 Bytes
50e583f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
__author__ = "qiao"

"""
Conduct the first stage retrieval by the hybrid retriever 
"""

from beir.datasets.data_loader import GenericDataLoader
import faiss
import json
from nltk import word_tokenize
import numpy as np
import os
from rank_bm25 import BM25Okapi
import sys
import tqdm
import torch
from transformers import AutoTokenizer, AutoModel
from beir import util, LoggingHandler

# Device detection - use CUDA if available, otherwise CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

def get_bm25_corpus_index(corpus):
	corpus_path = os.path.join(f"trialgpt_retrieval/bm25_corpus_{corpus}.json")

	# if already cached then load, otherwise build
	if os.path.exists(corpus_path):
		corpus_data = json.load(open(corpus_path))
		tokenized_corpus = corpus_data["tokenized_corpus"]
		corpus_nctids = corpus_data["corpus_nctids"]

	else:
		tokenized_corpus = []
		corpus_nctids = []

		with open(f"dataset/{corpus}/corpus.jsonl", "r") as f:
			for line in f.readlines():
				entry = json.loads(line)
				corpus_nctids.append(entry["_id"])
				
				# weighting: 3 * title, 2 * condition, 1 * text
				tokens = word_tokenize(entry["title"].lower()) * 3
				for disease in entry["metadata"]["diseases_list"]:
					tokens += word_tokenize(disease.lower()) * 2
				tokens += word_tokenize(entry["text"].lower())

				tokenized_corpus.append(tokens)

		corpus_data = {
			"tokenized_corpus": tokenized_corpus,
			"corpus_nctids": corpus_nctids,
		}

		with open(corpus_path, "w") as f:
			json.dump(corpus_data, f, indent=4)
	
	bm25 = BM25Okapi(tokenized_corpus)

	return bm25, corpus_nctids

			
def get_medcpt_corpus_index(corpus):
	corpus_path = f"trialgpt_retrieval/{corpus}_embeds.npy" 
	nctids_path = f"trialgpt_retrieval/{corpus}_nctids.json"

	# if already cached then load, otherwise build
	if os.path.exists(corpus_path):
		embeds = np.load(corpus_path)
		corpus_nctids = json.load(open(nctids_path)) 

	else:
		embeds = []
		corpus_nctids = []

		model = AutoModel.from_pretrained("ncbi/MedCPT-Article-Encoder").to(device)
		tokenizer = AutoTokenizer.from_pretrained("ncbi/MedCPT-Article-Encoder")

		with open(f"dataset/{corpus}/corpus.jsonl", "r") as f:
			print("Encoding the corpus")
			for line in tqdm.tqdm(f.readlines()):
				entry = json.loads(line)
				corpus_nctids.append(entry["_id"])

				title = entry["title"]
				text = entry["text"]

				with torch.no_grad():
					# tokenize the articles
					encoded = tokenizer(
						[[title, text]], 
						truncation=True, 
						padding=True, 
						return_tensors='pt', 
						max_length=512,
					).to(device)
					
					embed = model(**encoded).last_hidden_state[:, 0, :]

					embeds.append(embed[0].cpu().numpy())

		embeds = np.array(embeds)

		np.save(corpus_path, embeds)
		with open(nctids_path, "w") as f:
			json.dump(corpus_nctids, f, indent=4)

	index = faiss.IndexFlatIP(768)
	index.add(embeds)
	
	return index, corpus_nctids
	

if __name__ == "__main__":
	# different corpora, "trec_2021", "trec_2022", "sigir"
	corpus = sys.argv[1]

	# query type
	q_type = sys.argv[2]

	# different k for fusion
	k = int(sys.argv[3])

	# bm25 weight 
	bm25_wt = int(sys.argv[4])

	# medcpt weight
	medcpt_wt = int(sys.argv[5])

	# how many to rank
	N = 2000 

	# loading the qrels
	_, _, qrels = GenericDataLoader(data_folder=f"dataset/{corpus}/").load(split="test")

	# loading all types of queries
	id2queries = json.load(open(f"dataset/{corpus}/id2queries.json"))

	# loading the indices
	bm25, bm25_nctids = get_bm25_corpus_index(corpus)
	medcpt, medcpt_nctids = get_medcpt_corpus_index(corpus)

	# loading the query encoder for MedCPT
	model = AutoModel.from_pretrained("ncbi/MedCPT-Query-Encoder").to(device)
	tokenizer = AutoTokenizer.from_pretrained("ncbi/MedCPT-Query-Encoder")
	
	# then conduct the searches, saving top 1k
	output_path = f"results/qid2nctids_results_{q_type}_{corpus}_k{k}_bm25wt{bm25_wt}_medcptwt{medcpt_wt}_N{N}.json"
	
	qid2nctids = {}
	recalls = []

	with open(f"dataset/{corpus}/queries.jsonl", "r") as f:
		for line in tqdm.tqdm(f.readlines()):
			entry = json.loads(line)
			query = entry["text"]
			qid = entry["_id"]

			if qid not in qrels:
				continue

			truth_sum = sum(qrels[qid].values())
			
			# get the keyword list
			if q_type in ["raw", "human_summary"]:
				conditions = [id2queries[qid][q_type]]
			elif "turbo" in q_type:
				conditions = id2queries[qid][q_type]["conditions"]
			elif "Clinician" in q_type:
				conditions = id2queries[qid].get(q_type, [])

			if len(conditions) == 0:
				nctid2score = {}
			else:
				# a list of nctid lists for the bm25 retriever
				bm25_condition_top_nctids = []

				for condition in conditions:
					tokens = word_tokenize(condition.lower())
					top_nctids = bm25.get_top_n(tokens, bm25_nctids, n=N)
					bm25_condition_top_nctids.append(top_nctids)
				
				# doing MedCPT retrieval
				with torch.no_grad():
					encoded = tokenizer(
						conditions, 
						truncation=True, 
						padding=True, 
						return_tensors='pt', 
						max_length=256,
					).to(device)

					# encode the queries (use the [CLS] last hidden states as the representations)
					embeds = model(**encoded).last_hidden_state[:, 0, :].cpu().numpy()

					# search the Faiss index
					scores, inds = medcpt.search(embeds, k=N)				

				medcpt_condition_top_nctids = []
				for ind_list in inds:
					top_nctids = [medcpt_nctids[ind] for ind in ind_list]
					medcpt_condition_top_nctids.append(top_nctids)

				nctid2score = {}

				for condition_idx, (bm25_top_nctids, medcpt_top_nctids) in enumerate(zip(bm25_condition_top_nctids, medcpt_condition_top_nctids)):

					if bm25_wt > 0:
						for rank, nctid in enumerate(bm25_top_nctids):
							if nctid not in nctid2score:
								nctid2score[nctid] = 0
							
							nctid2score[nctid] += (1 / (rank + k)) * (1 / (condition_idx + 1))
					
					if medcpt_wt > 0:
						for rank, nctid in enumerate(medcpt_top_nctids):
							if nctid not in nctid2score:
								nctid2score[nctid] = 0
							
							nctid2score[nctid] += (1 / (rank + k)) * (1 / (condition_idx + 1))

			nctid2score = sorted(nctid2score.items(), key=lambda x: -x[1])
			top_nctids = [nctid for nctid, _ in nctid2score[:N]]
			qid2nctids[qid] = top_nctids

			actual_sum = sum([qrels[qid].get(nctid, 0) for nctid in top_nctids])
			recalls.append(actual_sum / truth_sum)
	
	with open(output_path, "w") as f:
		json.dump(qid2nctids, f, indent=4)