Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,56 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
-
# from peft import PeftModel, PeftConfig
|
4 |
-
|
5 |
-
# # Load tokenizer
|
6 |
-
# tokenizer = AutoTokenizer.from_pretrained(".")
|
7 |
-
|
8 |
-
# # Load base model with quantization
|
9 |
-
# bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
10 |
-
# base_model = AutoModelForCausalLM.from_pretrained(
|
11 |
-
# "unsloth/Meta-Llama-3.1-8B-bnb-4bit", # same base you fine-tuned
|
12 |
-
# quantization_config=bnb_config,
|
13 |
-
# device_map="auto"
|
14 |
-
# )
|
15 |
-
|
16 |
-
# # Load LoRA adapters
|
17 |
-
# model = PeftModel.from_pretrained(base_model, ".")
|
18 |
-
|
19 |
-
# # Create Gradio Interface
|
20 |
-
# def generate_response(prompt):
|
21 |
-
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
22 |
-
# outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, temperature=0.7)
|
23 |
-
# return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
-
|
25 |
-
# gr.Interface(
|
26 |
-
# fn=generate_response,
|
27 |
-
# inputs=gr.Textbox(label="Enter your instruction"),
|
28 |
-
# outputs=gr.Textbox(label="Model response"),
|
29 |
-
# title="LLaMA 3 - Fine-tuned Model"
|
30 |
-
# ).launch()
|
31 |
-
|
32 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
33 |
-
from peft import PeftModel
|
34 |
-
import torch
|
35 |
-
import gradio as gr
|
36 |
-
|
37 |
-
# Load base model from HF Hub
|
38 |
-
base_model_name = "
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
40 |
-
|
41 |
-
# Load base model (set torch_dtype if needed)
|
42 |
-
model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16)
|
43 |
-
|
44 |
-
# Load LoRA adapters from local files in Space
|
45 |
-
adapter_path = "./" # If adapter files are in root or specify folder name
|
46 |
-
model = PeftModel.from_pretrained(model, adapter_path)
|
47 |
-
|
48 |
-
model.eval()
|
49 |
-
|
50 |
-
def predict(text):
|
51 |
-
inputs = tokenizer(text, return_tensors="pt").to("cpu") # Use "cuda" if GPU available
|
52 |
-
outputs = model.generate(**inputs, max_new_tokens=
|
53 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
-
|
55 |
-
iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="LoRA Model Demo")
|
56 |
-
iface.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
+
# from peft import PeftModel, PeftConfig
|
4 |
+
|
5 |
+
# # Load tokenizer
|
6 |
+
# tokenizer = AutoTokenizer.from_pretrained(".")
|
7 |
+
|
8 |
+
# # Load base model with quantization
|
9 |
+
# bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
10 |
+
# base_model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
# "unsloth/Meta-Llama-3.1-8B-bnb-4bit", # same base you fine-tuned
|
12 |
+
# quantization_config=bnb_config,
|
13 |
+
# device_map="auto"
|
14 |
+
# )
|
15 |
+
|
16 |
+
# # Load LoRA adapters
|
17 |
+
# model = PeftModel.from_pretrained(base_model, ".")
|
18 |
+
|
19 |
+
# # Create Gradio Interface
|
20 |
+
# def generate_response(prompt):
|
21 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
22 |
+
# outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, temperature=0.7)
|
23 |
+
# return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
|
25 |
+
# gr.Interface(
|
26 |
+
# fn=generate_response,
|
27 |
+
# inputs=gr.Textbox(label="Enter your instruction"),
|
28 |
+
# outputs=gr.Textbox(label="Model response"),
|
29 |
+
# title="LLaMA 3 - Fine-tuned Model"
|
30 |
+
# ).launch()
|
31 |
+
|
32 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
33 |
+
from peft import PeftModel
|
34 |
+
import torch
|
35 |
+
import gradio as gr
|
36 |
+
|
37 |
+
# Load base model from HF Hub
|
38 |
+
base_model_name = "distilgpt2"
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
40 |
+
|
41 |
+
# Load base model (set torch_dtype if needed)
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16)
|
43 |
+
|
44 |
+
# Load LoRA adapters from local files in Space
|
45 |
+
adapter_path = "./" # If adapter files are in root or specify folder name
|
46 |
+
model = PeftModel.from_pretrained(model, adapter_path)
|
47 |
+
|
48 |
+
model.eval()
|
49 |
+
|
50 |
+
def predict(text):
|
51 |
+
inputs = tokenizer(text, return_tensors="pt").to("cpu") # Use "cuda" if GPU available
|
52 |
+
outputs = model.generate(**inputs, max_new_tokens=70)
|
53 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
+
|
55 |
+
iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="LoRA Model Demo")
|
56 |
+
iface.launch()
|