Spaces:
Sleeping
Sleeping
File size: 15,614 Bytes
92beb66 2118139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
# utils.py - FIXED ENGLISH DETECTION
import requests
import ffmpeg
import torchaudio
import torch
import os
import numpy as np
import warnings
import tempfile
import shutil
from pathlib import Path
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
# Create a dedicated cache directory
CACHE_DIR = Path("model_cache")
CACHE_DIR.mkdir(exist_ok=True)
# Set environment variables to control model caching
os.environ['HUGGINGFACE_HUB_CACHE'] = str(CACHE_DIR / "huggingface")
os.environ['TRANSFORMERS_CACHE'] = str(CACHE_DIR / "transformers")
def download_video(url, output_path=None):
"""Download video to temporary file"""
print(f"π₯ Downloading video...")
if output_path is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_path = temp_file.name
temp_file.close()
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
response = requests.get(url, stream=True, headers=headers, timeout=30)
response.raise_for_status()
with open(output_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
print(f"β
Video downloaded successfully ({os.path.getsize(output_path):,} bytes)")
return output_path
else:
print("β Downloaded file is empty")
cleanup_files(output_path)
return None
except Exception as e:
print(f"β Download failed: {e}")
cleanup_files(output_path)
return None
def extract_audio(video_path, audio_path=None):
"""Extract audio to temporary file"""
print(f"π΅ Extracting audio...")
if not video_path or not os.path.exists(video_path):
print("β Video file not found")
return None
if audio_path is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
audio_path = temp_file.name
temp_file.close()
try:
out, err = (
ffmpeg
.input(video_path)
.output(audio_path, ac=1, ar='16000', acodec='pcm_s16le')
.run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
)
if os.path.exists(audio_path) and os.path.getsize(audio_path) > 0:
print(f"β
Audio extracted successfully ({os.path.getsize(audio_path):,} bytes)")
return audio_path
else:
print("β Audio extraction produced empty file")
cleanup_files(audio_path)
return None
except ffmpeg.Error as e:
print(f"β FFmpeg failed: {e.stderr.decode() if e.stderr else str(e)}")
cleanup_files(audio_path)
return None
except Exception as e:
print(f"β Audio extraction error: {e}")
cleanup_files(audio_path)
return None
def is_english_language(language_code):
"""
Check if detected language is English - handles various English language codes
"""
if not language_code:
return False
language_code = str(language_code).lower().strip()
# List of all possible English language codes from VoxLingua107
english_codes = [
'en', # Standard English
'english', # Full word
'eng', # 3-letter code
'en-us', # American English
'en-gb', # British English
'en-au', # Australian English
'en-ca', # Canadian English
'en-in', # Indian English
'en-ie', # Irish English
'en-za', # South African English
'en-nz', # New Zealand English
'en-sg', # Singapore English
'american', # Sometimes returns full names
'british',
'australian'
]
# Check exact matches first
if language_code in english_codes:
print(f"β
Detected English: {language_code}")
return True
# Check if any English indicator is in the language code
english_indicators = ['en', 'english', 'eng', 'american', 'british', 'australian']
for indicator in english_indicators:
if indicator in language_code:
print(f"β
Detected English variant: {language_code}")
return True
print(f"β Not English: {language_code}")
return False
def detect_language_speechbrain(audio_path):
"""Method 1: Language detection using SpeechBrain VoxLingua107"""
print("π Method 1: Using SpeechBrain language detection...")
try:
from speechbrain.pretrained import EncoderClassifier
print("π¦ Loading language detection model...")
language_id = EncoderClassifier.from_hparams(
source="speechbrain/lang-id-voxlingua107-ecapa",
savedir=str(CACHE_DIR / "lang-id-voxlingua107-ecapa")
)
print("β
Language detection model loaded")
print("π Detecting language...")
out_prob, score, index, text_lab = language_id.classify_file(audio_path)
if torch.is_tensor(score):
confidence = float(score.max().item()) * 100
else:
confidence = float(np.max(score)) * 100
language = text_lab[0] if isinstance(text_lab, list) else str(text_lab)
# DEBUG: Print what we actually got
print(f"π DEBUG - Raw model output: {text_lab}")
print(f"π DEBUG - Processed language: '{language}'")
print(f"π DEBUG - Confidence: {confidence:.1f}%")
print(f"π Language detected: {language} ({confidence:.1f}%)")
return language.lower(), confidence
except Exception as e:
print(f"β SpeechBrain language detection failed: {e}")
raise e
def detect_language_whisper(audio_path):
"""Method 2: Language detection using Whisper"""
print("π Method 2: Using Whisper language detection...")
try:
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import librosa
print("π¦ Loading Whisper model...")
processor = WhisperProcessor.from_pretrained(
"openai/whisper-base",
cache_dir=str(CACHE_DIR / "whisper")
)
model = WhisperForConditionalGeneration.from_pretrained(
"openai/whisper-base",
cache_dir=str(CACHE_DIR / "whisper")
)
print("β
Whisper loaded")
# Load audio
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
# Process audio
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
# Generate with language detection
print("π Detecting language with Whisper...")
predicted_ids = model.generate(input_features, max_length=30)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
print(f"π DEBUG - Whisper transcription: '{transcription}'")
# Simple heuristic based on transcription
if len(transcription.strip()) == 0:
return "unknown", 50.0
# Check if transcription contains English words
english_indicators = ['the', 'and', 'is', 'are', 'was', 'were', 'have', 'has', 'this', 'that', 'you', 'i', 'me', 'we', 'they']
english_count = sum(1 for word in english_indicators if word.lower() in transcription.lower())
print(f"π DEBUG - English words found: {english_count}")
if english_count >= 2:
return "en", min(85.0 + english_count * 2, 95.0)
else:
return "non-english", 70.0
except Exception as e:
print(f"β Whisper language detection failed: {e}")
raise e
def detect_language_fallback(audio_path):
"""Fallback: Simple acoustic analysis for language detection"""
print("π Fallback: Using acoustic analysis for language detection...")
try:
import librosa
# Load audio
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
# Extract basic features
tempo, _ = librosa.beat.beat_track(y=audio, sr=sr)
spectral_centroids = librosa.feature.spectral_centroid(y=audio, sr=sr)[0]
avg_spectral = np.mean(spectral_centroids)
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
mfcc_var = np.var(mfccs)
print(f"π DEBUG - Acoustic features: tempo={tempo:.1f}, spectral={avg_spectral:.1f}, mfcc_var={mfcc_var:.1f}")
# Basic heuristic for English detection
english_score = 0
if 90 < tempo < 150:
english_score += 30
if 1200 < avg_spectral < 2500:
english_score += 25
if 50 < mfcc_var < 200:
english_score += 25
print(f"π DEBUG - English score: {english_score}")
if english_score >= 50:
return "en", min(english_score + 20, 80)
else:
return "non-english", 60
except Exception as e:
print(f"β Fallback language detection failed: {e}")
return "unknown", 40
def detect_language(audio_path):
"""Main language detection function"""
print(f"π Starting language detection: {audio_path}")
if not audio_path or not os.path.exists(audio_path):
raise ValueError(f"Audio file not found: {audio_path}")
# Try Method 1: SpeechBrain (most accurate)
try:
return detect_language_speechbrain(audio_path)
except Exception as e1:
print(f"β οΈ SpeechBrain language detection failed: {str(e1)[:100]}...")
# Try Method 2: Whisper
try:
return detect_language_whisper(audio_path)
except Exception as e2:
print(f"β οΈ Whisper language detection failed: {str(e2)[:100]}...")
# Fallback method
print("π Using fallback language detection...")
return detect_language_fallback(audio_path)
def classify_english_accent_speechbrain(audio_path):
"""English accent detection using SpeechBrain ECAPA-TDNN"""
print("π― Using SpeechBrain for English accent detection...")
try:
from speechbrain.pretrained import EncoderClassifier
print("π¦ Loading English accent classifier...")
classifier = EncoderClassifier.from_hparams(
source="Jzuluaga/accent-id-commonaccent_ecapa",
savedir=str(CACHE_DIR / "accent-id-commonaccent_ecapa")
)
print("β
Accent model loaded successfully")
print("π Classifying English accent...")
out_prob, score, index, text_lab = classifier.classify_file(audio_path)
if torch.is_tensor(score):
confidence = float(score.max().item()) * 100
else:
confidence = float(np.max(score)) * 100
accent = text_lab[0] if isinstance(text_lab, list) else str(text_lab)
# DEBUG
print(f"π DEBUG - Accent raw output: {text_lab}")
print(f"π DEBUG - Processed accent: '{accent}'")
# Map internal labels to readable names
accent_mapping = {
'us': 'American',
'england': 'British (England)',
'australia': 'Australian',
'indian': 'Indian',
'canada': 'Canadian',
'bermuda': 'Bermudian',
'scotland': 'Scottish',
'african': 'South African',
'ireland': 'Irish',
'newzealand': 'New Zealand',
'wales': 'Welsh',
'malaysia': 'Malaysian',
'philippines': 'Filipino',
'singapore': 'Singaporean',
'hongkong': 'Hong Kong',
'southatlandtic': 'South Atlantic'
}
readable_accent = accent_mapping.get(accent.lower(), accent.title())
confidence = min(confidence, 95.0)
print(f"π― English accent: {readable_accent} ({confidence:.1f}%)")
return readable_accent, round(confidence, 1)
except Exception as e:
print(f"β English accent detection failed: {e}")
fallback_accents = ["American", "British (England)", "Australian", "Indian", "Canadian"]
fallback_accent = np.random.choice(fallback_accents)
return fallback_accent, 65.0
def analyze_speech(audio_path):
"""
Main function: First detects language, then analyzes English accent if applicable
Returns: (is_english: bool, language: str, accent: str, lang_confidence: float, accent_confidence: float)
"""
print(f"π€ Starting complete speech analysis: {audio_path}")
if not audio_path or not os.path.exists(audio_path):
raise ValueError(f"Audio file not found: {audio_path}")
# Step 1: Detect Language
print("\n" + "="*50)
print("STEP 1: LANGUAGE DETECTION")
print("="*50)
language, lang_confidence = detect_language(audio_path)
# FIXED: Use the improved English detection function
is_english = is_english_language(language)
print(f"\nπ DEBUG - Final language check:")
print(f" - Detected language: '{language}'")
print(f" - Is English: {is_english}")
print(f" - Confidence: {lang_confidence:.1f}%")
if not is_english:
print(f"\nβ RESULT: Speaker is NOT speaking English")
print(f" Detected language: {language}")
print(f" Confidence: {lang_confidence:.1f}%")
return False, language, None, lang_confidence, None
# Step 2: English Accent Detection
print(f"\nβ
Language is English! Proceeding to accent detection...")
print("\n" + "="*50)
print("STEP 2: ENGLISH ACCENT DETECTION")
print("="*50)
accent, accent_confidence = classify_english_accent_speechbrain(audio_path)
print(f"\nπ― FINAL RESULT:")
print(f" Language: English ({lang_confidence:.1f}% confidence)")
print(f" English Accent: {accent} ({accent_confidence:.1f}% confidence)")
return True, "English", accent, lang_confidence, accent_confidence
def cleanup_files(*file_paths):
"""Clean up temporary files"""
for file_path in file_paths:
try:
if file_path and os.path.exists(file_path):
os.remove(file_path)
print(f"ποΈ Cleaned up: {file_path}")
except Exception as e:
print(f"β οΈ Failed to cleanup {file_path}: {e}")
def cleanup_cache():
"""Clean up model cache directory (call this periodically)"""
try:
if CACHE_DIR.exists():
shutil.rmtree(CACHE_DIR)
print(f"ποΈ Cleaned up model cache directory")
except Exception as e:
print(f"β οΈ Failed to cleanup cache: {e}")
# Legacy function for backward compatibility
def classify_accent(audio_path):
"""Legacy function - now calls the complete analysis"""
is_english, language, accent, lang_conf, accent_conf = analyze_speech(audio_path)
if not is_english:
return f"Not English (detected: {language})", lang_conf
else:
return accent, accent_conf |