Spaces:
Running
Running
File size: 29,727 Bytes
8a254d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.data_utils import get_dataframe_category, get_dataframe_language
import src.config as configs
from utils import get_profile_and_organizations, download_with_restart
from vis_utils import load_leaderboard_data, create_domain_radar_chart, create_len_overall_scatter
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
EVALUATION_QUEUE_TEXT_OPTION1,
INTRODUCTION_TEXT,
BANNER,
TITLE,
LINK,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.submission.submit import add_new_eval_option
from ui import create_leaderboard_tab
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
download_with_restart(
snapshot_download,
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
token=TOKEN,
restart_func=restart_space
)
download_with_restart(
snapshot_download,
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
token=TOKEN,
restart_func=restart_space
)
theme = gr.themes.Default(
primary_hue="gray",
neutral_hue="gray"
)
demo = gr.Blocks(css=custom_css, theme=theme)
with demo:
gr.HTML(BANNER + TITLE + LINK)
user_state = gr.State()
organization_state = gr.State()
with gr.Tabs(elem_classes="tab-buttons") as main_tabs:
with gr.TabItem("TRUEBench", elem_id="llm-benchmark-tab-table", id=2):
gr.HTML(INTRODUCTION_TEXT)
gr.HTML("""
<div class="dark-container" style="margin-bottom: 24px;">
<div class="section-header">
<h3 style="margin: 0; color: var(--text-primary); font-size: 1.5rem; font-family: 'Geist', sans-serif; font-weight: 700;">
Category Analysis
</h3>
</div>
<p style="color: var(--text-secondary); margin-bottom: 20px; font-size: 1.1rem; font-family: 'Geist', sans-serif;">TRUEBench consists of 10 categories and 46 sub-categories which highly related to productivity assistants.</p>
""")
# --- Category Explanation Box (2x5 grid, emoji, desc from about.py) ---
from src.about import CATEGORY_DESCRIPTIONS
gr.HTML(f"""
<style>
.category-box-grid {{
display: flex;
flex-direction: column;
gap: 18px;
margin: 18px 0;
}}
.category-box-row {{
display: flex;
gap: 18px;
}}
.category-box {{
background: linear-gradient(135deg, #e3e6f3 60%, #f5f6fa 100%);
border-radius: 26px;
box-shadow: 0 0 16px #6c63ff44, 0 2px 8px rgba(0,0,0,0.08);
color: #222 !important;
min-height: 140px;
flex: 1 1 0;
display: flex;
flex-direction: column;
align-items: flex-start;
padding: 18px 16px 12px 16px;
box-shadow: 0 0 16px #6c63ff44, 0 2px 8px rgba(0,0,0,0.08);
font-size: 1.08rem;
color: #222 !important;
transition: box-shadow 0.2s;
position: relative;
overflow: hidden;
opacity: 1;
}}
.category-title {{
font-weight: 700;
font-size: 1.18rem;
margin-left: 8px;
vertical-align: middle;
color: #222 !important;
}}
.category-desc {{
margin-top: 12px;
font-size: 0.98rem;
color: #fff !important;
font-weight: 400;
min-height: 24px;
width: 100%;
line-height: 1.5;
letter-spacing: 0.01em;
}}
.category-box:hover {{
box-shadow: 0 0 24px #a5a1ff55, 0 4px 16px rgba(0,0,0,0.18);
}}
.category-title {{
font-weight: 700;
font-size: 1.18rem;
margin-left: 8px;
vertical-align: middle;
}}
.category-desc {{
margin-top: 12px;
font-size: 0.98rem;
color: #222 !important;
font-weight: 400;
min-height: 24px;
width: 100%;
line-height: 1.5;
letter-spacing: 0.01em;
}}
@media (prefers-color-scheme: dark) {{
.category-box .category-title {{
color: #f5f6f7 !important;
}}
}}
</style>
<div class='category-box-grid'>
<div class='category-box-row'>
<div class='category-box'><span class='category-title'>π Content Generation</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Content Generation"]}</div></div>
<div class='category-box'><span class='category-title'>βοΈ Editing</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Editing"]}</div></div>
<div class='category-box'><span class='category-title'>π Data Analysis</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Data Analysis"]}</div></div>
<div class='category-box'><span class='category-title'>π§ Reasoning</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Reasoning"]}</div></div>
<div class='category-box'><span class='category-title'>π¦ Hallucination</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Hallucination"]}</div></div>
</div>
<div class='category-box-row'>
<div class='category-box'><span class='category-title'>π‘οΈ Safety</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Safety"]}</div></div>
<div class='category-box'><span class='category-title'>π Repetition</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Repetition"]}</div></div>
<div class='category-box'><span class='category-title'>π Summarization</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Summarization"]}</div></div>
<div class='category-box'><span class='category-title'>π Translation</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Translation"]}</div></div>
<div class='category-box'><span class='category-title'>π¬ Multi-Turn</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Multi-Turn"]}</div></div>
</div>
</div>
""")
df = get_dataframe_category()
gr.HTML("""
<style>
.leaderboard-container {
background: #fff;
}
@media (prefers-color-scheme: dark) {
.leaderboard-container {
background: #121212;
}
}
</style>
<div class="leaderboard-container">
""")
leaderboard_tab_cat = create_leaderboard_tab(
df,
"Category",
)
gr.HTML("</div>")
# --- Category Radar Chart Section ---
from vis_utils import load_leaderboard_data, create_domain_radar_chart
initial_df_cat = load_leaderboard_data()
# Top 5 models based on leaderboard (Average Accuracy)
if "Overall" in initial_df_cat.columns:
top5_models_cat = initial_df_cat.sort_values("Overall", ascending=False)['Model Name'].tolist()[:5]
else:
top5_models_cat = initial_df_cat['Model Name'].tolist()[:5]
gr.HTML('<div class="chart-container" style="display: flex; justify-content: center; align-items: center; width: 100%; max-width: 100%; margin: 0 auto; padding: 0;">')
# Radar chart model selector (up to 5)
from src.display.formatting import get_display_model_name
display_names_cat = initial_df_cat['Model Name'].apply(get_display_model_name).tolist()
original_names_cat = initial_df_cat['Model Name'].tolist()
display_to_original_cat = dict(zip(display_names_cat, original_names_cat))
top5_display_names_cat = [get_display_model_name(m) for m in top5_models_cat]
model_selector_cat = gr.Dropdown(
choices=display_names_cat,
value=top5_display_names_cat,
multiselect=True,
label="π― Select Models for Radar Chart",
info="Choose up to 5 models to visualize",
elem_classes=["dropdown", "custom-dropdown"],
interactive=True,
filterable=True,
allow_custom_value=False
)
gr.HTML("""
<script>
document.querySelector('.custom-dropdown').addEventListener('change', function(e) {
if (this.value.length > 5) {
alert('You can select up to 5 models only');
this.value = this.value.slice(0, 5);
}
});
</script>
""")
radar_chart_cat = gr.Plot(
label="",
value=create_domain_radar_chart(
initial_df_cat,
"Average Accuracy",
top5_models_cat
),
elem_classes=["radar-chart", "plot-container"]
)
gr.HTML('</div>')
# Update radar chart when model_selector_cat selection changes
def update_radar_chart_cat(selected_display_names):
# If no selection, fallback to top-5
if not selected_display_names or len(selected_display_names) == 0:
df = load_leaderboard_data()
selected_display_names = [get_display_model_name(m) for m in df['Model Name'].tolist()[:5]]
selected_models = [display_to_original_cat[name] for name in selected_display_names if name in display_to_original_cat]
return create_domain_radar_chart(
load_leaderboard_data(),
"Average Accuracy",
selected_models
)
model_selector_cat.change(
fn=update_radar_chart_cat,
inputs=model_selector_cat,
outputs=radar_chart_cat
)
# --- Med. Len. vs Overall Scatter Plot Section ---
from vis_utils import create_len_overall_scatter
import json
with open("src/data/length_data.json", "r") as f:
length_data = json.load(f)
# --- Create a Gradio State component to hold length_data ---
length_data_state = gr.State(value=length_data)
gr.HTML("""
<div class="dark-container" style="margin-bottom: 24px; margin-top: 24px;">
<div class="section-header">
<h3 style="margin: 0; color: var(--text-primary); font-size: 1.5rem; font-family: 'Geist', sans-serif; font-weight: 700;">
Output Length vs. Category Score
</h3>
</div>
<p style="color: var(--text-secondary); margin-bottom: 20px; font-size: 1.1rem; font-family: 'Geist', sans-serif;">
Explore the relationship between median output length and model performance by category
</p>
""")
# Category selection buttons (HTML + Gradio Radio for event)
category_columns = [col for col in configs.ON_LOAD_COLUMNS_CATEGORY if col not in configs.CATEGORY_EXCLUDED_COLUMNS]
# (cat-btn-radio related style block removed, now handled in custom_css)
category_selector = gr.Radio(
choices=category_columns,
value="Overall",
label="Select Category for Y-Axis",
elem_id="cat-btn-radio",
elem_classes=["cat-btn-radio"],
interactive=True,
show_label=False
)
x_axis_selector = gr.Radio(
choices=["Med. Len.", "Med. Resp. Len."],
value="Med. Len.",
label="Select X-Axis Data",
elem_id="x-axis-btn-radio",
elem_classes=["x-axis-btn-radio"],
interactive=True,
show_label=True
)
gr.HTML('<div class="chart-container" style="display: flex; justify-content: center; align-items: center;">')
scatter_plot_cat = gr.Plot(
label="",
value=create_len_overall_scatter(
load_leaderboard_data(),
y_col="Overall",
length_data=length_data,
x_axis_data_source=x_axis_selector.value
),
elem_classes=["efficiency-chart", "plot-container"]
)
gr.HTML('</div>')
gr.HTML("</div>")
# Update plot when category or x-axis selection changes
def update_scatter_plot_cat(selected_category, selected_x_source, current_length_data_state):
return create_len_overall_scatter(
load_leaderboard_data(),
y_col=selected_category,
length_data=current_length_data_state,
x_axis_data_source=selected_x_source
)
category_selector.change(
fn=update_scatter_plot_cat,
inputs=[category_selector, x_axis_selector, length_data_state],
outputs=scatter_plot_cat
)
x_axis_selector.change(
fn=update_scatter_plot_cat,
inputs=[category_selector, x_axis_selector, length_data_state],
outputs=scatter_plot_cat
)
# When leaderboard selectors change, synchronize model_selector_cat and radar_chart_cat to top-5
def update_model_selector_and_radar_chart_cat_from_leaderboard(types, model_types, thinks, df, sort_col):
_, _, top5_models = leaderboard_tab_cat["unified_filter"](types, model_types, thinks, df, sort_col)
top5_display_names = [get_display_model_name(m) for m in top5_models[:5]]
return gr.update(value=top5_display_names), create_domain_radar_chart(
load_leaderboard_data(),
"Average Accuracy",
top5_models[:5]
)
leaderboard_selectors_cat = [
leaderboard_tab_cat["type_selector"],
leaderboard_tab_cat["model_type_selector"],
leaderboard_tab_cat["think_selector"],
leaderboard_tab_cat["df_state"],
leaderboard_tab_cat["sort_col_dropdown"]
]
for selector in leaderboard_selectors_cat:
selector.change(
fn=update_model_selector_and_radar_chart_cat_from_leaderboard,
inputs=leaderboard_selectors_cat,
outputs=[model_selector_cat, radar_chart_cat]
)
gr.HTML("""
<div class="dark-container" style="margin-bottom: 24px;">
<div class="section-header">
<h3 style="margin: 0; color: var(--text-primary); font-size: 1.5rem; font-family: 'Geist', sans-serif; font-weight: 700;">
Language Analysis
</h3>
</div>
<p style="color: var(--text-secondary); margin-bottom: 20px; font-size: 1.1rem; font-family: 'Geist', sans-serif;">As a multilingual benchmark, TRUEBench supports a total of 12 user input languages: Korean (KO), English (EN), Japanese (JA), Chinese (ZH), Polish (PL), German (DE), Portuguese (PT), Spanish (ES), French (FR), Italian (IT), Russian (RU), and Vietnamese (VI).</p>
""")
df = get_dataframe_language()
leaderboard_tab_lang = create_leaderboard_tab(
df,
"Language",
)
# --- Language Radar Chart Section ---
from vis_utils import load_leaderboard_language_data, create_language_radar_chart
initial_df_lang = load_leaderboard_language_data()
# Top 5 models based on leaderboard (Overall)
if "Overall" in initial_df_lang.columns:
top5_models_lang = initial_df_lang.sort_values("Overall", ascending=False)['Model Name'].tolist()[:5]
else:
top5_models_lang = initial_df_lang['Model Name'].tolist()[:5]
gr.HTML('<div class="chart-container" style="display: flex; justify-content: center; align-items: center;">')
# Add model selector
display_names_lang = initial_df_lang['Model Name'].apply(get_display_model_name).tolist()
original_names_lang = initial_df_lang['Model Name'].tolist()
display_to_original_lang = dict(zip(display_names_lang, original_names_lang))
top5_display_names_lang = [get_display_model_name(m) for m in top5_models_lang]
model_selector_lang = gr.Dropdown(
choices=display_names_lang,
value=top5_display_names_lang,
multiselect=True,
label="π― Select Models for Radar Chart",
info="Choose up to 5 models to visualize",
elem_classes=["dropdown", "custom-dropdown"],
interactive=True,
filterable=True,
allow_custom_value=False
)
gr.HTML("""
<script>
document.querySelectorAll('.custom-dropdown')[1].addEventListener('change', function(e) {
if (this.value.length > 5) {
alert('You can select up to 5 models only');
this.value = this.value.slice(0, 5);
}
});
</script>
""")
radar_chart_lang = gr.Plot(
label="",
value=create_language_radar_chart(
initial_df_lang,
"Average Accuracy",
top5_models_lang
),
elem_classes=["radar-chart", "plot-container"]
)
gr.HTML('</div>')
# Update radar chart when model_selector_lang selection changes
def update_radar_chart_lang(selected_display_names):
if not selected_display_names or len(selected_display_names) == 0:
df = load_leaderboard_language_data()
selected_display_names = [get_display_model_name(m) for m in df['Model Name'].tolist()[:5]]
selected_models = [display_to_original_lang[name] for name in selected_display_names if name in display_to_original_lang]
return create_language_radar_chart(
load_leaderboard_language_data(),
"Average Accuracy",
selected_models
)
model_selector_lang.change(
fn=update_radar_chart_lang,
inputs=model_selector_lang,
outputs=radar_chart_lang
)
# When leaderboard selectors change, automatically synchronize model_selector_lang and radar_chart_lang to top-5
def update_model_selector_and_radar_chart_lang_from_leaderboard(types, model_types, thinks, df, sort_col):
_, _, top5_models = leaderboard_tab_lang["unified_filter"](types, model_types, thinks, df, sort_col)
top5_display_names = [get_display_model_name(m) for m in top5_models[:5]]
return gr.update(value=top5_display_names), create_language_radar_chart(
load_leaderboard_language_data(),
"Average Accuracy",
top5_models[:5]
)
leaderboard_selectors_lang = [
leaderboard_tab_lang["type_selector"],
leaderboard_tab_lang["model_type_selector"],
leaderboard_tab_lang["think_selector"],
leaderboard_tab_lang["df_state"],
leaderboard_tab_lang["sort_col_dropdown"]
]
for selector in leaderboard_selectors_lang:
selector.change(
fn=update_model_selector_and_radar_chart_lang_from_leaderboard,
inputs=leaderboard_selectors_lang,
outputs=[model_selector_lang, radar_chart_lang]
)
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT_OPTION1, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("## βοΈ Submit your model here!", elem_classes="markdown-text")
login_button = gr.LoginButton()
with gr.Row():
with gr.Column():
contact_email = gr.Textbox(label="Contact Email", placeholder="Your email address", interactive=True)
model_name_textbox = gr.Textbox(label="Model Name")
model_type_dropdown = gr.Dropdown(
choices=["Instruct", "Think", "Hybrid"],
label="Model Type (Instruct, Think, or Hybrid)",
multiselect=False,
value="Instruct",
interactive=True,
)
think_type_dropdown = gr.Dropdown(
choices=["On", "Off"],
label="Think Mode (On/Off)",
multiselect=False,
value="Off",
interactive=False,
)
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
# --- Dynamically control think_type based on model_type and connect event ---
def update_think_type(model_type_value):
if model_type_value == "Instruct":
return gr.update(value="Off", interactive=False)
elif model_type_value == "Think":
return gr.update(value="On", interactive=False)
else: # Hybrid
return gr.update(value="On", interactive=True)
model_type_dropdown.change(
fn=update_think_type,
inputs=model_type_dropdown,
outputs=think_type_dropdown
)
response_prefix_textbox = gr.Textbox(label="Response prefix", placeholder="(e.g., </think>)")
with gr.Column():
yml_textbox_placeholder = """# vLLM serving parameters
# Refence: https://docs.vllm.ai/en/latest/cli/serve.html
llm_serve_args:
max_model_len:
tensor_parallel_size:
dtype:
...
# OpenAI-compatible API (chat completion)
# Reference: https://platform.openai.com/docs/api-reference/chat
sampling_params:
top_p:
temperature:
presence_penalty:
...
# vLLM sampling parameters
# Reference: https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#chat-api_1
extra_body:
chat_template_kwargs:
enable_thinking:
...
top_k:
repetition_penalty:
..."""
yml_textbox = gr.Textbox(
label="Configuration (YAML format)",
elem_id="yml-textbox",
lines=7,
value=yml_textbox_placeholder
)
upbox = gr.File(
label="Upload configuration file as .yml or .yaml",
file_types=[".yml", ".yaml"],
type="filepath",
height=150
)
# Add Translate to JSON button below upbox
translate_button = gr.Button(
"Translate to JSON",
elem_id="translate-to-json-btn",
elem_classes=["translate-btn"],
scale=None
)
# Add custom style for the button
gr.HTML(
'''
<style>
#translate-to-json-btn, .translate-btn {
width: 100%;
min-height: 24px;
font-size: 1.1rem;
font-weight: 600;
background: linear-gradient(90deg, #6c63ff 60%, #a5a1ff 100%);
color: #fff;
border: none;
border-radius: 12px;
margin-top: 8px;
margin-bottom: 8px;
box-shadow: 0 2px 8px #6c63ff33;
transition: background 0.2s, box-shadow 0.2s;
}
#translate-to-json-btn:hover, .translate-btn:hover {
background: linear-gradient(90deg, #5a54d6 60%, #7e7bff 100%);
box-shadow: 0 4px 16px #6c63ff55;
}
</style>
'''
)
with gr.Column():
requirements_textbox = gr.Textbox(label="(Optional) Requirements", lines=30, elem_id="requirements-textbox")
output_dict = gr.Code(label="Translated Python Dictionary", language="json")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
def parse_and_display_yaml_config(upbox_path, yml_textbox_value):
import yaml, json
if upbox_path:
try:
with open(upbox_path, "r", encoding="utf-8") as f:
data = yaml.safe_load(f)
if data is None:
return "YAML file is empty."
return json.dumps(data, indent=4, ensure_ascii=False)
except Exception as e:
return f"Error parsing YAML file: {e}"
elif yml_textbox_value and yml_textbox_value.strip():
try:
data = yaml.safe_load(yml_textbox_value)
if data is None:
return "YAML textbox is empty or invalid."
return json.dumps(data, indent=4, ensure_ascii=False)
except Exception as e:
return f"Error parsing YAML textbox: {e}"
else:
return ""
event = submit_button.click(get_profile_and_organizations, inputs=[], outputs=[user_state, organization_state])
event.then(
add_new_eval_option,
[
contact_email,
model_name_textbox,
model_type_dropdown,
think_type_dropdown,
precision,
response_prefix_textbox,
requirements_textbox,
user_state,
organization_state,
yml_textbox,
upbox,
],
submission_result,
).then(
fn=parse_and_display_yaml_config,
inputs=[upbox, yml_textbox],
outputs=output_dict
)
translate_button.click(
fn=parse_and_display_yaml_config,
inputs=[upbox, yml_textbox],
outputs=output_dict
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|