File size: 29,727 Bytes
8a254d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import gradio as gr

from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.data_utils import get_dataframe_category, get_dataframe_language
import src.config as configs
from utils import get_profile_and_organizations, download_with_restart
from vis_utils import load_leaderboard_data, create_domain_radar_chart, create_len_overall_scatter

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    EVALUATION_QUEUE_TEXT_OPTION1,
    INTRODUCTION_TEXT,
    BANNER,
    TITLE,
    LINK,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.submission.submit import add_new_eval_option

from ui import create_leaderboard_tab

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
download_with_restart(
    snapshot_download,
    repo_id=QUEUE_REPO,
    local_dir=EVAL_REQUESTS_PATH,
    repo_type="dataset",
    token=TOKEN,
    restart_func=restart_space
)
download_with_restart(
    snapshot_download,
    repo_id=RESULTS_REPO,
    local_dir=EVAL_RESULTS_PATH,
    repo_type="dataset",
    token=TOKEN,
    restart_func=restart_space
)

theme = gr.themes.Default(
    primary_hue="gray",
    neutral_hue="gray"
)

demo = gr.Blocks(css=custom_css, theme=theme)
with demo:
    gr.HTML(BANNER + TITLE + LINK)
    user_state = gr.State()
    organization_state = gr.State()

    with gr.Tabs(elem_classes="tab-buttons") as main_tabs:
        with gr.TabItem("TRUEBench", elem_id="llm-benchmark-tab-table", id=2):
            gr.HTML(INTRODUCTION_TEXT)

            gr.HTML("""
            <div class="dark-container" style="margin-bottom: 24px;">
                <div class="section-header">
                    <h3 style="margin: 0; color: var(--text-primary); font-size: 1.5rem; font-family: 'Geist', sans-serif; font-weight: 700;">
                        Category Analysis
                    </h3>
                </div>
                <p style="color: var(--text-secondary); margin-bottom: 20px; font-size: 1.1rem; font-family: 'Geist', sans-serif;">TRUEBench consists of 10 categories and 46 sub-categories which highly related to productivity assistants.</p>
            """)
            # --- Category Explanation Box (2x5 grid, emoji, desc from about.py) ---
            from src.about import CATEGORY_DESCRIPTIONS
            gr.HTML(f"""
            <style>
                .category-box-grid {{ 
                display: flex;
                flex-direction: column;
                gap: 18px;
                margin: 18px 0;
                }}
                .category-box-row {{
                display: flex;
                gap: 18px;
                }}
                .category-box {{
                background: linear-gradient(135deg, #e3e6f3 60%, #f5f6fa 100%);
                border-radius: 26px;
                box-shadow: 0 0 16px #6c63ff44, 0 2px 8px rgba(0,0,0,0.08);
                color: #222 !important;
                min-height: 140px;
                flex: 1 1 0;
                display: flex;
                flex-direction: column;
                align-items: flex-start;
                padding: 18px 16px 12px 16px;
                box-shadow: 0 0 16px #6c63ff44, 0 2px 8px rgba(0,0,0,0.08);
                font-size: 1.08rem;
                color: #222 !important;
                transition: box-shadow 0.2s;
                position: relative;
                overflow: hidden;
                opacity: 1;
                }}
                .category-title {{
                font-weight: 700;
                font-size: 1.18rem;
                margin-left: 8px;
                vertical-align: middle;
                color: #222 !important;
                }}
                .category-desc {{
                margin-top: 12px;
                font-size: 0.98rem;
                color: #fff !important;
                font-weight: 400;
                min-height: 24px;
                width: 100%;
                line-height: 1.5;
                letter-spacing: 0.01em;
                }}
                .category-box:hover {{
                box-shadow: 0 0 24px #a5a1ff55, 0 4px 16px rgba(0,0,0,0.18);
                }}
                .category-title {{
                font-weight: 700;
                font-size: 1.18rem;
                margin-left: 8px;
                vertical-align: middle;
                }}
                .category-desc {{
                margin-top: 12px;
                font-size: 0.98rem;
                color: #222 !important;
                font-weight: 400;
                min-height: 24px;
                width: 100%;
                line-height: 1.5;
                letter-spacing: 0.01em;
                }}
                @media (prefers-color-scheme: dark) {{
                  .category-box .category-title {{
                    color: #f5f6f7 !important;
                  }}
                }}
            </style>
            <div class='category-box-grid'>
                <div class='category-box-row'>
                <div class='category-box'><span class='category-title'>πŸ“ Content Generation</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Content Generation"]}</div></div>
                <div class='category-box'><span class='category-title'>βœ‚οΈ Editing</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Editing"]}</div></div>
                <div class='category-box'><span class='category-title'>πŸ“Š Data Analysis</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Data Analysis"]}</div></div>
                <div class='category-box'><span class='category-title'>🧠 Reasoning</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Reasoning"]}</div></div>
                <div class='category-box'><span class='category-title'>πŸ¦„ Hallucination</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Hallucination"]}</div></div>
                </div>
                <div class='category-box-row'>
                <div class='category-box'><span class='category-title'>πŸ›‘οΈ Safety</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Safety"]}</div></div>
                <div class='category-box'><span class='category-title'>πŸ” Repetition</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Repetition"]}</div></div>
                <div class='category-box'><span class='category-title'>πŸ“ Summarization</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Summarization"]}</div></div>
                <div class='category-box'><span class='category-title'>🌐 Translation</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Translation"]}</div></div>
                <div class='category-box'><span class='category-title'>πŸ’¬ Multi-Turn</span><div class='category-desc'>{CATEGORY_DESCRIPTIONS["Multi-Turn"]}</div></div>
                </div>
            </div>
            """)
            df = get_dataframe_category()
            
            gr.HTML("""
            <style>
            .leaderboard-container {
                background: #fff;
            }
            @media (prefers-color-scheme: dark) {
                .leaderboard-container {
                    background: #121212;
                }
            }
            </style>
            <div class="leaderboard-container">
            """)
            leaderboard_tab_cat = create_leaderboard_tab(
                df,
                "Category",
            )
            gr.HTML("</div>")

            
            # --- Category Radar Chart Section ---
            from vis_utils import load_leaderboard_data, create_domain_radar_chart
            initial_df_cat = load_leaderboard_data()
            # Top 5 models based on leaderboard (Average Accuracy)
            if "Overall" in initial_df_cat.columns:
                top5_models_cat = initial_df_cat.sort_values("Overall", ascending=False)['Model Name'].tolist()[:5]
            else:
                top5_models_cat = initial_df_cat['Model Name'].tolist()[:5]
            gr.HTML('<div class="chart-container" style="display: flex; justify-content: center; align-items: center; width: 100%; max-width: 100%; margin: 0 auto; padding: 0;">')
            # Radar chart model selector (up to 5)
            from src.display.formatting import get_display_model_name
            display_names_cat = initial_df_cat['Model Name'].apply(get_display_model_name).tolist()
            original_names_cat = initial_df_cat['Model Name'].tolist()
            display_to_original_cat = dict(zip(display_names_cat, original_names_cat))
            top5_display_names_cat = [get_display_model_name(m) for m in top5_models_cat]
            model_selector_cat = gr.Dropdown(
                choices=display_names_cat,
                value=top5_display_names_cat,
                multiselect=True,
                label="🎯 Select Models for Radar Chart",
                info="Choose up to 5 models to visualize",
                elem_classes=["dropdown", "custom-dropdown"],
                interactive=True,
                filterable=True,
                allow_custom_value=False
            )
            gr.HTML("""
            <script>
            document.querySelector('.custom-dropdown').addEventListener('change', function(e) {
                if (this.value.length > 5) {
                    alert('You can select up to 5 models only');
                    this.value = this.value.slice(0, 5);
                }
            });
            </script>
            """)
            radar_chart_cat = gr.Plot(
                label="",
                value=create_domain_radar_chart(
                    initial_df_cat, 
                    "Average Accuracy", 
                    top5_models_cat
                ),
                elem_classes=["radar-chart", "plot-container"]
            )
            gr.HTML('</div>')

            # Update radar chart when model_selector_cat selection changes
            def update_radar_chart_cat(selected_display_names):
                # If no selection, fallback to top-5
                if not selected_display_names or len(selected_display_names) == 0:
                    df = load_leaderboard_data()
                    selected_display_names = [get_display_model_name(m) for m in df['Model Name'].tolist()[:5]]
                selected_models = [display_to_original_cat[name] for name in selected_display_names if name in display_to_original_cat]
                return create_domain_radar_chart(
                    load_leaderboard_data(),
                    "Average Accuracy",
                    selected_models
                )
            model_selector_cat.change(
                fn=update_radar_chart_cat,
                inputs=model_selector_cat,
                outputs=radar_chart_cat
            )
            # --- Med. Len. vs Overall Scatter Plot Section ---
            from vis_utils import create_len_overall_scatter
            import json
            with open("src/data/length_data.json", "r") as f:
                length_data = json.load(f)
            
            # --- Create a Gradio State component to hold length_data ---
            length_data_state = gr.State(value=length_data)
            gr.HTML("""
            <div class="dark-container" style="margin-bottom: 24px; margin-top: 24px;">
                <div class="section-header">
                    <h3 style="margin: 0; color: var(--text-primary); font-size: 1.5rem; font-family: 'Geist', sans-serif; font-weight: 700;">
                        Output Length vs. Category Score
                    </h3>
                </div>
                <p style="color: var(--text-secondary); margin-bottom: 20px; font-size: 1.1rem; font-family: 'Geist', sans-serif;">
                    Explore the relationship between median output length and model performance by category
                </p>
            """)
                                  

            # Category selection buttons (HTML + Gradio Radio for event)
            category_columns = [col for col in configs.ON_LOAD_COLUMNS_CATEGORY if col not in configs.CATEGORY_EXCLUDED_COLUMNS]
            # (cat-btn-radio related style block removed, now handled in custom_css)
            category_selector = gr.Radio(
                choices=category_columns,
                value="Overall",
                label="Select Category for Y-Axis",
                elem_id="cat-btn-radio",
                elem_classes=["cat-btn-radio"],
                interactive=True,
                show_label=False
            )
            x_axis_selector = gr.Radio(
                choices=["Med. Len.", "Med. Resp. Len."],
                value="Med. Len.",
                label="Select X-Axis Data",
                elem_id="x-axis-btn-radio",
                elem_classes=["x-axis-btn-radio"],
                interactive=True,
                show_label=True
            )
            gr.HTML('<div class="chart-container" style="display: flex; justify-content: center; align-items: center;">')
            scatter_plot_cat = gr.Plot(
                label="",
                value=create_len_overall_scatter(
                    load_leaderboard_data(),
                    y_col="Overall",
                    length_data=length_data,
                    x_axis_data_source=x_axis_selector.value
                ),
                elem_classes=["efficiency-chart", "plot-container"]
            )
            gr.HTML('</div>')
            gr.HTML("</div>")

            # Update plot when category or x-axis selection changes
            def update_scatter_plot_cat(selected_category, selected_x_source, current_length_data_state):
                return create_len_overall_scatter(
                    load_leaderboard_data(),
                    y_col=selected_category,
                    length_data=current_length_data_state,
                    x_axis_data_source=selected_x_source
                )
            category_selector.change(
                fn=update_scatter_plot_cat,
                inputs=[category_selector, x_axis_selector, length_data_state],
                outputs=scatter_plot_cat
            )
            x_axis_selector.change(
                fn=update_scatter_plot_cat,
                inputs=[category_selector, x_axis_selector, length_data_state],
                outputs=scatter_plot_cat
            )

            # When leaderboard selectors change, synchronize model_selector_cat and radar_chart_cat to top-5
            def update_model_selector_and_radar_chart_cat_from_leaderboard(types, model_types, thinks, df, sort_col):
                _, _, top5_models = leaderboard_tab_cat["unified_filter"](types, model_types, thinks, df, sort_col)
                
                top5_display_names = [get_display_model_name(m) for m in top5_models[:5]]
                return gr.update(value=top5_display_names), create_domain_radar_chart(
                    load_leaderboard_data(),
                    "Average Accuracy",
                    top5_models[:5]
                )

            leaderboard_selectors_cat = [
                leaderboard_tab_cat["type_selector"],
                leaderboard_tab_cat["model_type_selector"],
                leaderboard_tab_cat["think_selector"],
                leaderboard_tab_cat["df_state"],
                leaderboard_tab_cat["sort_col_dropdown"]
            ]
            for selector in leaderboard_selectors_cat:
                selector.change(
                    fn=update_model_selector_and_radar_chart_cat_from_leaderboard,
                    inputs=leaderboard_selectors_cat,
                    outputs=[model_selector_cat, radar_chart_cat]
                )


                
            gr.HTML("""
            <div class="dark-container" style="margin-bottom: 24px;">
                <div class="section-header">
                    <h3 style="margin: 0; color: var(--text-primary); font-size: 1.5rem; font-family: 'Geist', sans-serif; font-weight: 700;">
                        Language Analysis
                    </h3>
                </div>
                <p style="color: var(--text-secondary); margin-bottom: 20px; font-size: 1.1rem; font-family: 'Geist', sans-serif;">As a multilingual benchmark, TRUEBench supports a total of 12 user input languages: Korean (KO), English (EN), Japanese (JA), Chinese (ZH), Polish (PL), German (DE), Portuguese (PT), Spanish (ES), French (FR), Italian (IT), Russian (RU), and Vietnamese (VI).</p>
            """)
            df = get_dataframe_language()
            
            leaderboard_tab_lang = create_leaderboard_tab(
                df,
                "Language",
            )

            # --- Language Radar Chart Section ---
            
            from vis_utils import load_leaderboard_language_data, create_language_radar_chart
            initial_df_lang = load_leaderboard_language_data()

            # Top 5 models based on leaderboard (Overall)
            if "Overall" in initial_df_lang.columns:
                top5_models_lang = initial_df_lang.sort_values("Overall", ascending=False)['Model Name'].tolist()[:5]
            else:
                top5_models_lang = initial_df_lang['Model Name'].tolist()[:5]

            gr.HTML('<div class="chart-container" style="display: flex; justify-content: center; align-items: center;">')
            # Add model selector
            display_names_lang = initial_df_lang['Model Name'].apply(get_display_model_name).tolist()
            original_names_lang = initial_df_lang['Model Name'].tolist()
            display_to_original_lang = dict(zip(display_names_lang, original_names_lang))
            top5_display_names_lang = [get_display_model_name(m) for m in top5_models_lang]
            model_selector_lang = gr.Dropdown(
                choices=display_names_lang,
                value=top5_display_names_lang,
                multiselect=True,
                label="🎯 Select Models for Radar Chart",
                info="Choose up to 5 models to visualize",
                elem_classes=["dropdown", "custom-dropdown"],
                interactive=True,
                filterable=True,
                allow_custom_value=False
            )
            gr.HTML("""
            <script>
            document.querySelectorAll('.custom-dropdown')[1].addEventListener('change', function(e) {
                if (this.value.length > 5) {
                    alert('You can select up to 5 models only');
                    this.value = this.value.slice(0, 5);
                }
            });
            </script>
            """)
            radar_chart_lang = gr.Plot(
                label="",
                value=create_language_radar_chart(
                    initial_df_lang,
                    "Average Accuracy",
                    top5_models_lang
                ),
                elem_classes=["radar-chart", "plot-container"]
            )
            gr.HTML('</div>')

            # Update radar chart when model_selector_lang selection changes
            def update_radar_chart_lang(selected_display_names):
                if not selected_display_names or len(selected_display_names) == 0:
                    df = load_leaderboard_language_data()
                    selected_display_names = [get_display_model_name(m) for m in df['Model Name'].tolist()[:5]]
                selected_models = [display_to_original_lang[name] for name in selected_display_names if name in display_to_original_lang]
                return create_language_radar_chart(
                    load_leaderboard_language_data(),
                    "Average Accuracy",
                    selected_models
                )
            model_selector_lang.change(
                fn=update_radar_chart_lang,
                inputs=model_selector_lang,
                outputs=radar_chart_lang
            )

            # When leaderboard selectors change, automatically synchronize model_selector_lang and radar_chart_lang to top-5
            def update_model_selector_and_radar_chart_lang_from_leaderboard(types, model_types, thinks, df, sort_col):
                _, _, top5_models = leaderboard_tab_lang["unified_filter"](types, model_types, thinks, df, sort_col)
                top5_display_names = [get_display_model_name(m) for m in top5_models[:5]]
                return gr.update(value=top5_display_names), create_language_radar_chart(
                    load_leaderboard_language_data(),
                    "Average Accuracy",
                    top5_models[:5]
                )

            leaderboard_selectors_lang = [
                leaderboard_tab_lang["type_selector"],
                leaderboard_tab_lang["model_type_selector"],
                leaderboard_tab_lang["think_selector"],
                leaderboard_tab_lang["df_state"],
                leaderboard_tab_lang["sort_col_dropdown"]
            ]

            for selector in leaderboard_selectors_lang:
                selector.change(
                    fn=update_model_selector_and_radar_chart_lang_from_leaderboard,
                    inputs=leaderboard_selectors_lang,
                    outputs=[model_selector_lang, radar_chart_lang]
                )



        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT_OPTION1, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("## βœ‰οΈ Submit your model here!", elem_classes="markdown-text")
            
            login_button = gr.LoginButton()
            
            with gr.Row():
                with gr.Column():
                    contact_email = gr.Textbox(label="Contact Email", placeholder="Your email address", interactive=True)
                    model_name_textbox = gr.Textbox(label="Model Name")
                    model_type_dropdown = gr.Dropdown(
                        choices=["Instruct", "Think", "Hybrid"],
                        label="Model Type (Instruct, Think, or Hybrid)",
                        multiselect=False,
                        value="Instruct",
                        interactive=True,
                    )
                    think_type_dropdown = gr.Dropdown(
                        choices=["On", "Off"],
                        label="Think Mode (On/Off)",
                        multiselect=False,
                        value="Off",
                        interactive=False,
                    )
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    # --- Dynamically control think_type based on model_type and connect event ---
                    def update_think_type(model_type_value):
                        if model_type_value == "Instruct":
                            return gr.update(value="Off", interactive=False)
                        elif model_type_value == "Think":
                            return gr.update(value="On", interactive=False)
                        else:  # Hybrid
                            return gr.update(value="On", interactive=True)
                    model_type_dropdown.change(
                        fn=update_think_type,
                        inputs=model_type_dropdown,
                        outputs=think_type_dropdown
                    )
                    response_prefix_textbox = gr.Textbox(label="Response prefix", placeholder="(e.g., </think>)")

                with gr.Column():
                    yml_textbox_placeholder = """# vLLM serving parameters 
# Refence: https://docs.vllm.ai/en/latest/cli/serve.html
llm_serve_args:
    max_model_len:
    tensor_parallel_size:
    dtype:
    ...
# OpenAI-compatible API (chat completion)
# Reference: https://platform.openai.com/docs/api-reference/chat
sampling_params:
    top_p:
    temperature:
    presence_penalty:
    ...
# vLLM sampling parameters
# Reference: https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#chat-api_1
extra_body:
    chat_template_kwargs:
        enable_thinking: 
        ...
    top_k:
    repetition_penalty:
    ..."""
                    yml_textbox = gr.Textbox(
                        label="Configuration (YAML format)",
                        elem_id="yml-textbox",
                        lines=7,
                        value=yml_textbox_placeholder
                    )
                    upbox = gr.File(
                        label="Upload configuration file as .yml or .yaml",
                        file_types=[".yml", ".yaml"],
                        type="filepath",
                        height=150
                    )
                    # Add Translate to JSON button below upbox
                    translate_button = gr.Button(
                        "Translate to JSON",
                        elem_id="translate-to-json-btn",
                        elem_classes=["translate-btn"],
                        scale=None
                    )
                    # Add custom style for the button
                    gr.HTML(
                        '''
                        <style>
                        #translate-to-json-btn, .translate-btn {
                            width: 100%;
                            min-height: 24px;
                            font-size: 1.1rem;
                            font-weight: 600;
                            background: linear-gradient(90deg, #6c63ff 60%, #a5a1ff 100%);
                            color: #fff;
                            border: none;
                            border-radius: 12px;
                            margin-top: 8px;
                            margin-bottom: 8px;
                            box-shadow: 0 2px 8px #6c63ff33;
                            transition: background 0.2s, box-shadow 0.2s;
                        }
                        #translate-to-json-btn:hover, .translate-btn:hover {
                            background: linear-gradient(90deg, #5a54d6 60%, #7e7bff 100%);
                            box-shadow: 0 4px 16px #6c63ff55;
                        }
                        </style>
                        '''
                    )
                with gr.Column():
                    requirements_textbox = gr.Textbox(label="(Optional) Requirements", lines=30, elem_id="requirements-textbox")

            output_dict = gr.Code(label="Translated Python Dictionary", language="json")
            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            def parse_and_display_yaml_config(upbox_path, yml_textbox_value):
                import yaml, json
                if upbox_path:
                    try:
                        with open(upbox_path, "r", encoding="utf-8") as f:
                            data = yaml.safe_load(f)
                        if data is None:
                            return "YAML file is empty."
                        return json.dumps(data, indent=4, ensure_ascii=False)
                    except Exception as e:
                        return f"Error parsing YAML file: {e}"
                elif yml_textbox_value and yml_textbox_value.strip():
                    try:
                        data = yaml.safe_load(yml_textbox_value)
                        if data is None:
                            return "YAML textbox is empty or invalid."
                        return json.dumps(data, indent=4, ensure_ascii=False)
                    except Exception as e:
                        return f"Error parsing YAML textbox: {e}"
                else:
                    return ""

            event = submit_button.click(get_profile_and_organizations, inputs=[], outputs=[user_state, organization_state])
            event.then(
                add_new_eval_option,
                [
                    contact_email,
                    model_name_textbox,
                    model_type_dropdown,
                    think_type_dropdown,
                    precision,
                    response_prefix_textbox,
                    requirements_textbox,
                    user_state,
                    organization_state,
                    yml_textbox,
                    upbox,
                ],
                submission_result,
            ).then(
                fn=parse_and_display_yaml_config,
                inputs=[upbox, yml_textbox],
                outputs=output_dict
            )
            translate_button.click(
                fn=parse_and_display_yaml_config,
                inputs=[upbox, yml_textbox],
                outputs=output_dict
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )


scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()