File size: 10,245 Bytes
8a254d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import json
import yaml
import os
import re
from datetime import datetime, timezone, timedelta
from typing import Optional
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, FAILED_EVAL_REQUESTS_PATH, TOKEN, FAILED_QUEUE_REPO, QUEUE_REPO, REPO_ID
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size
)
import gradio as gr
from utils import download_with_restart
from huggingface_hub import snapshot_download

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def restart_space():
    API.restart_space(repo_id=REPO_ID)

def add_new_eval_option(
    contact_email: str,
    model: str,
    model_type: str,
    think_type: str,
    precision: str,
    response_prefix: str,
    requirements: str,
    user_state: str,
    organization_list: list,
    yml_textbox: str,
    upbox,
):
    
    ERROR_MESSAGE = None

    # Validate email format
    email_regex = r"^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$"
    if not re.match(email_regex, contact_email):
        if ERROR_MESSAGE is None:
            ERROR_MESSAGE = "Please provide a valid email address."

    # Synchronize: Just before submission, copy the latest QUEUE_REPO to EVAL_REQUESTS_PATH
    download_with_restart(
        snapshot_download,
        repo_id=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH,
        repo_type="dataset",
        token=TOKEN,
        restart_func=restart_space
    )

    # Synchronize: Just before submission, copy the latest FAILED_QUEUE_REPO to FAILED_EVAL_REQUESTS_PATH
    download_with_restart(
        snapshot_download,
        repo_id=FAILED_QUEUE_REPO,
        local_dir=FAILED_EVAL_REQUESTS_PATH,
        repo_type="dataset",
        token=TOKEN,
        restart_func=restart_space
    )

    REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    KST = timezone(timedelta(hours=9))
    current_time = datetime.now(KST).strftime("%Y-%m-%dT%H:%M:%S %z")

    # Remove space in benchmark name
    benchmark = "TRUEBench"

    # Check submitter qualification

    if user_name != user_state and user_name not in organization_list:
        if ERROR_MESSAGE is None:
            ERROR_MESSAGE = "The submitter does not have submission rights for this model."
        
    # Does the organization submit more than three times in a day?
    submission_times = [item['submitted_time'] for item in USERS_TO_SUBMISSION_DATES[user_name] if item['benchmark'] == benchmark]
    submission_cnt = 0
    for i in range(len(submission_times)):
        hours_diff = (datetime.strptime(current_time, "%Y-%m-%dT%H:%M:%S %z") - datetime.strptime(submission_times[i], "%Y-%m-%dT%H:%M:%S %z")).total_seconds() / 3600
        if hours_diff <= 24:
            submission_cnt += 1
    if submission_cnt >= 3:
        if ERROR_MESSAGE is None:
            ERROR_MESSAGE = "The organization already submitted three times for this benchmark today."

    # Does the model actually exist?
    revision = "main"

    # Is the model info correctly filled?
    model_info = None
    model_size = "Unknown"
    try:
        model_info = API.model_info(repo_id=model, revision=revision)
        model_size = get_model_size(model_info=model_info, precision=precision)
    except Exception:
        if ERROR_MESSAGE is None:
            ERROR_MESSAGE = "Could not get your model information. Please fill it up properly."

    # Were the model card and license filled?
    license = "Unknown"
    if model_info is not None:
        try:
            license = model_info.cardData["license"]
        except Exception:
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = "Please select a license for your model."

        modelcard_OK, error_msg = check_model_card(model)
        if not modelcard_OK:
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = error_msg
    
    # Response prefix check
    if think_type == "On":
        if response_prefix == "":
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = "It is required to fill in the response prefix when 'Think' is 'On'."
    else:
        response_prefix = ""
        
    # Handle YAML config input (file or textbox)
    config_dict = None

    # Case 1: File uploaded
    if upbox is not None and getattr(upbox, "name", ""):
        file_name = upbox.name
        if not file_name.lower().endswith(".yaml") and not file_name.lower().endswith(".yml"):
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = "Please submit a .yaml or .yml file."
        try:
            with open(file_name, 'r', encoding='utf-8') as f:
                config_dict = yaml.safe_load(f)
        except yaml.YAMLError:
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = "The file is not a valid YAML format."
        except Exception as e:
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = f"An error occurred while reading the file. {e}"
        if config_dict is None:
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = "The YAML file is empty or invalid."
    else:
        # Case 2: No file uploaded
        if not yml_textbox or not yml_textbox.strip():
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = "Please fill in the configuration box or submit a YAML file."
        try:
            config_dict = yaml.safe_load(yml_textbox)
        except yaml.YAMLError:
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = "Please provide a valid configuration."
        if config_dict is None:
            if ERROR_MESSAGE is None:
                ERROR_MESSAGE = "Please provide a valid configuration."

    # Restrict config keys
    allowed_keys = {"llm_serve_args", "sampling_params", "extra_body"}
    if not isinstance(config_dict, dict):
        if ERROR_MESSAGE is None:
            ERROR_MESSAGE = "The configuration must be a YAML dictionary at the top level."
    extra_keys = set(config_dict.keys()) - allowed_keys
    if extra_keys:
        if ERROR_MESSAGE is None:
            ERROR_MESSAGE = f"Only the following keys are allowed in the configuration: llm_serve_args, sampling_params, extra_body. Found invalid keys: {', '.join(sorted(extra_keys))}."

    configs = json.dumps(config_dict, indent=4, ensure_ascii=False)

    # Check for duplicate submission
    submission_times = [item['submitted_time'] for item in USERS_TO_SUBMISSION_DATES[user_name] if item['benchmark'] == benchmark and item['model'] == model]
    submission_cnt = 0
    submission_total_cnt = 0
    for i in range(len(submission_times)):
        submission_total_cnt += 1
        hours_diff = (datetime.strptime(current_time, "%Y-%m-%dT%H:%M:%S %z") - datetime.strptime(submission_times[i], "%Y-%m-%dT%H:%M:%S %z")).total_seconds() / 3600
        if hours_diff <= 24:
            submission_cnt += 1
    if submission_cnt >= 1:
        if ERROR_MESSAGE is None:
            ERROR_MESSAGE = "This model has been already submitted within 24 hours."
    if submission_total_cnt >= 3:
        if ERROR_MESSAGE is None:
            ERROR_MESSAGE = "This model has been already submitted three times for this benchmark."

    print("Creating eval file")
    if ERROR_MESSAGE is None:
        OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}/{benchmark}_{model_path}"
    else:
        OUT_DIR = f"{FAILED_EVAL_REQUESTS_PATH}/{user_name}/{benchmark}_{model_path}"
    os.makedirs(OUT_DIR, exist_ok=True)
    current_time_replaced = current_time.replace("-", "").replace(":", "").replace("T", "_").split()[0]
    out_path = f"{OUT_DIR}/{current_time_replaced}.json"

    # Seems good, creating the eval
    print("Adding new eval")

    if ERROR_MESSAGE is None:
        eval_entry = {
            "benchmark": benchmark,
            "contact_email": contact_email,
            "model": model,
            "type": "open",
            "model_type": model_type,
            "think_type": think_type,
            "precision": precision,
            "response_prefix": response_prefix,
            "requirements": requirements,
            "status": "PENDING",
            "submitted_time": current_time,
            "likes": getattr(model_info, "likes", -1),
            "params": model_size,
            "license": license,
            "private": False,
            "configs": configs
        }
    else:
        eval_entry = {
            "benchmark": benchmark,
            "contact_email": contact_email,
            "model": model,
            "type": "open",
            "model_type": model_type,
            "think_type": think_type,
            "precision": precision,
            "response_prefix": response_prefix,
            "requirements": requirements,
            "status": "Failed",
            "submitted_time": current_time,
            "likes": getattr(model_info, "likes", -1),
            "params": model_size,
            "license": license,
            "private": False,
            "configs": configs,
            "error_message": ERROR_MESSAGE
        }

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    if ERROR_MESSAGE is None:
        API.upload_file(
            path_or_fileobj=out_path,
            path_in_repo=out_path.split("eval-queue/")[1],
            repo_id=QUEUE_REPO,
            repo_type="dataset",
            commit_message=f"Add {model} to eval queue",
        )
    else:
        API.upload_file(
            path_or_fileobj=out_path,
            path_in_repo=out_path.split("failed-eval-queue/")[1],
            repo_id=FAILED_QUEUE_REPO,
            repo_type="dataset",
            commit_message=f"Add {model} to failed eval queue",
        )

    # Remove the local file
    os.remove(out_path)

    if ERROR_MESSAGE is None:
        return styled_message(
            "Your request has been submitted to the evaluation queue!"
        )
    else:
        return styled_error(
            ERROR_MESSAGE
        )