Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import ASSETS, YOLO | |
import PIL.Image as Image | |
import os | |
examples = [[Image.open(f'examples/{ex}'), 0.25, 0.45] for ex in os.listdir('examples')] | |
model = YOLO("license_plate_detector.pt") | |
def predict_image(img, conf_threshold, iou_threshold): | |
"""Predicts objects in an image using a YOLO11 model with adjustable confidence and IOU thresholds.""" | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
return im | |
title='License Plate Detector π' | |
description='A license plate detector model fine-tuned from Ultralytics Yolov11' | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
], | |
outputs=gr.Image(type="pil", label="Result"), | |
title=title, | |
description=description, | |
examples=examples, | |
flagging_mode='never' | |
) | |
if __name__ == "__main__": | |
iface.launch() | |