import gradio as gr from ultralytics import ASSETS, YOLO import PIL.Image as Image import os examples = [[Image.open(f'examples/{ex}'), 0.25, 0.45] for ex in os.listdir('examples')] model = YOLO("license_plate_detector.pt") def predict_image(img, conf_threshold, iou_threshold): """Predicts objects in an image using a YOLO11 model with adjustable confidence and IOU thresholds.""" results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im title='License Plate Detector 🚗' description='A license plate detector model fine-tuned from Ultralytics Yolov11' iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), ], outputs=gr.Image(type="pil", label="Result"), title=title, description=description, examples=examples, flagging_mode='never' ) if __name__ == "__main__": iface.launch()