Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,27 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
import
|
4 |
-
from io import BytesIO
|
5 |
|
6 |
-
#
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
img = Image.open(BytesIO(response.content))
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
+
import torch
|
|
|
4 |
|
5 |
+
# Cargar el modelo y el procesador
|
6 |
+
model = Wav2Vec2ForCTC.from_pretrained("openai/whisper-large-v2")
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained("openai/whisper-large-v2")
|
8 |
|
9 |
+
def asr(audio_file_path):
|
10 |
+
# Cargar archivo de audio
|
11 |
+
input_audio, _ = librosa.load(audio_file_path, sr=16000)
|
12 |
|
13 |
+
# Preprocesar audio
|
14 |
+
input_values = processor(input_audio, return_tensors="pt", sampling_rate=16000).input_values
|
|
|
15 |
|
16 |
+
# Realizar inferencia
|
17 |
+
logits = model(input_values).logits
|
18 |
|
19 |
+
# Decodificar los logits a texto
|
20 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
21 |
+
transcription = processor.decode(predicted_ids[0])
|
22 |
|
23 |
+
return transcription
|
24 |
+
|
25 |
+
# Crear interfaz de Gradio
|
26 |
+
iface = gr.Interface(fn=asr, inputs=gr.inputs.Audio(source="microphone", type="file"), outputs="text")
|
27 |
+
iface.launch()
|