Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,23 @@ import librosa
|
|
5 |
import datasets
|
6 |
from transformers.pipelines.pt_utils import KeyDataset
|
7 |
from tqdm.auto import tqdm
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
image_to_text_model = pipeline("image-classification",model="microsoft/beit-base-patch16-224-pt22k-ft22k")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def image_to_text(input_image):
|
13 |
# Convertir la imagen a texto
|
@@ -16,10 +30,76 @@ def image_to_text(input_image):
|
|
16 |
#texts = transcriber(text_output)
|
17 |
return text_output
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
).launch()
|
|
|
5 |
import datasets
|
6 |
from transformers.pipelines.pt_utils import KeyDataset
|
7 |
from tqdm.auto import tqdm
|
8 |
+
import logging
|
9 |
+
import time
|
10 |
+
import uuid
|
11 |
+
import soundfile as sf
|
12 |
+
from model import get_pretrained_model, language_to_models
|
13 |
|
14 |
+
#text to speech code from https://huggingface.co/spaces/k2-fsa/text-to-speech/blob/main/app.py
|
15 |
image_to_text_model = pipeline("image-classification",model="microsoft/beit-base-patch16-224-pt22k-ft22k")
|
16 |
|
17 |
+
def build_html_output(s: str, style: str = "result_item_success"):
|
18 |
+
return f"""
|
19 |
+
<div class='result'>
|
20 |
+
<div class='result_item {style}'>
|
21 |
+
{s}
|
22 |
+
</div>
|
23 |
+
</div>
|
24 |
+
"""
|
25 |
|
26 |
def image_to_text(input_image):
|
27 |
# Convertir la imagen a texto
|
|
|
30 |
#texts = transcriber(text_output)
|
31 |
return text_output
|
32 |
|
33 |
+
def text_to_speech(language: str, repo_id: str, text: str, sid: str, speed: float):
|
34 |
+
logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}")
|
35 |
+
sid = int(sid)
|
36 |
+
tts = get_pretrained_model(repo_id, speed)
|
37 |
+
|
38 |
+
start = time.time()
|
39 |
+
audio = tts.generate(text, sid=sid)
|
40 |
+
end = time.time()
|
41 |
+
|
42 |
+
if len(audio.samples) == 0:
|
43 |
+
raise ValueError(
|
44 |
+
"Error in generating audios. Please read previous error messages."
|
45 |
+
)
|
46 |
+
|
47 |
+
duration = len(audio.samples) / audio.sample_rate
|
48 |
+
|
49 |
+
elapsed_seconds = end - start
|
50 |
+
rtf = elapsed_seconds / duration
|
51 |
+
|
52 |
+
info = f"""
|
53 |
+
Wave duration : {duration:.3f} s <br/>
|
54 |
+
Processing time: {elapsed_seconds:.3f} s <br/>
|
55 |
+
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>
|
56 |
+
"""
|
57 |
+
|
58 |
+
logging.info(info)
|
59 |
+
logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
|
60 |
+
|
61 |
+
filename = str(uuid.uuid4())
|
62 |
+
filename = f"{filename}.wav"
|
63 |
+
sf.write(
|
64 |
+
filename,
|
65 |
+
audio.samples,
|
66 |
+
samplerate=audio.sample_rate,
|
67 |
+
subtype="PCM_16",
|
68 |
+
)
|
69 |
+
|
70 |
+
return filename, build_html_output(info)
|
71 |
+
|
72 |
+
demo = gr.Blocks()
|
73 |
+
|
74 |
+
with demo:
|
75 |
+
language_choices = list(language_to_models.keys())
|
76 |
+
inputsImg=gr.Image(type='pil')
|
77 |
+
idx=0
|
78 |
+
for txt in image_to_text(inputsImg)
|
79 |
+
output_txt[idx] = gr.Textbox(label=txt,lines=1,max_lines=1,value=txt,placeholder="Interpretation")
|
80 |
+
input_sid = gr.Textbox(
|
81 |
+
label="Speaker ID",
|
82 |
+
info="Speaker ID",
|
83 |
+
lines=1,
|
84 |
+
max_lines=1,
|
85 |
+
value="0",
|
86 |
+
placeholder="Speaker ID. Valid only for mult-speaker model",
|
87 |
+
)
|
88 |
+
input_speed = gr.Slider(
|
89 |
+
minimum=0.1,
|
90 |
+
maximum=10,
|
91 |
+
value=1,
|
92 |
+
step=0.1,
|
93 |
+
label="Speed (larger->faster; smaller->slower)",input_sid
|
94 |
+
)
|
95 |
+
text_to_speech(language_choices[0],language_to_models[language_choices[0]][0],txt,input_sid, input_speed)
|
96 |
+
output_audio[idx] = gr.Audio(label="Output")
|
97 |
+
output_info[idx] = gr.HTML(label="Info")
|
98 |
+
idx=idx+1
|
99 |
+
gr.Interface(fn=image_to_text,
|
100 |
+
title="Image to Text Interpretation",
|
101 |
+
inputs=inputsImg,
|
102 |
+
outputs=[output_txt,output_audio,input_sid,input_speed],
|
103 |
+
description="image to audio demo",
|
104 |
+
article = "",
|
105 |
).launch()
|