Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,34 @@ import gradio as gr
|
|
2 |
from transformers import pipeline,WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
import librosa
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
# checkpoint = "/innev/open-ai/huggingface/openai/whisper-base"
|
8 |
image_to_text_model = pipeline("image-classification")
|
9 |
text_to_audio_model = pipeline("text-to-speech")
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
def image_to_text(input_image):
|
12 |
# Convertir la imagen a texto
|
13 |
text_output = image_to_text_model(input_image)[0]['label']
|
|
|
|
|
14 |
return text_output
|
15 |
|
16 |
-
with gr.Blocks() as demo:
|
17 |
-
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
18 |
-
with gr.Row():
|
19 |
-
inp = gr.Image()
|
20 |
-
out = gr.Textbox(placeholder=image_to_text(inp))
|
21 |
-
gr.Interface(fn=image_to_text, inputs=inp, outputs=out,interpretation="default")
|
22 |
|
23 |
-
demo.launch()
|
|
|
2 |
from transformers import pipeline,WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
import librosa
|
5 |
+
import datasets
|
6 |
+
from transformers.pipelines.pt_utils import KeyDataset
|
7 |
+
from tqdm.auto import tqdm
|
8 |
|
9 |
+
transcriber = pipeline(model="openai/whisper-large-v2",device_map="auto")
|
10 |
# checkpoint = "/innev/open-ai/huggingface/openai/whisper-base"
|
11 |
image_to_text_model = pipeline("image-classification")
|
12 |
text_to_audio_model = pipeline("text-to-speech")
|
13 |
+
pipe_audio = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
|
14 |
+
dataset = datasets.load_dataset("superb", name="asr", split="test")
|
15 |
|
16 |
+
for out in tqdm(pipe(KeyDataset(dataset, "file"))):
|
17 |
+
print(out)
|
18 |
+
# {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
|
19 |
+
# {"text": ....}
|
20 |
+
# ....
|
21 |
def image_to_text(input_image):
|
22 |
# Convertir la imagen a texto
|
23 |
text_output = image_to_text_model(input_image)[0]['label']
|
24 |
+
print(text_output)
|
25 |
+
#texts = transcriber(text_output)
|
26 |
return text_output
|
27 |
|
28 |
+
#with gr.Blocks() as demo:
|
29 |
+
# gr.Markdown("Start typing below and then click **Run** to see the output.")
|
30 |
+
# with gr.Row():
|
31 |
+
# inp = gr.Image()
|
32 |
+
# out = gr.Textbox(placeholder=image_to_text(inp))
|
33 |
+
# gr.Interface(fn=image_to_text, inputs=inp, outputs=out,interpretation="default")
|
34 |
|
35 |
+
#demo.launch()
|