import gradio as gr from transformers import pipeline,WhisperProcessor, WhisperForConditionalGeneration import torch import librosa import datasets from transformers.pipelines.pt_utils import KeyDataset from tqdm.auto import tqdm import logging import time import uuid import soundfile as sf # model.py apache license 2.0 Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang) from model import get_pretrained_model, language_to_models # demo for a input given image transform into text interpretation, and those text put a speech text to be played #text to speech code from https://huggingface.co/spaces/k2-fsa/text-to-speech/blob/main/app.py image_to_text_model = pipeline("image-classification",model="microsoft/beit-base-patch16-224-pt22k-ft22k") def build_html_output(s: str, style: str = "result_item_success"): return f"""
{s}
""" def text_to_speech(language: str, repo_id: str, text: str, sid: str, speed: float): logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}") sid = int(sid) tts = get_pretrained_model(repo_id, speed) start = time.time() audio = tts.generate(text, sid=sid) end = time.time() if len(audio.samples) == 0: raise ValueError( "Error in generating audios. Please read previous error messages." ) duration = len(audio.samples) / audio.sample_rate elapsed_seconds = end - start rtf = elapsed_seconds / duration info = f""" Wave duration : {duration:.3f} s
Processing time: {elapsed_seconds:.3f} s
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f}
""" logging.info(info) logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}") filename = str(uuid.uuid4()) filename = f"{filename}.wav" sf.write( filename, audio.samples, samplerate=audio.sample_rate, subtype="PCM_16", ) return filename, build_html_output(info) demo = gr.Blocks() with demo: language_choices = list(language_to_models.keys()) inputsImg=gr.Image(type='pil') idx=0 text_output = image_to_text_model(inputsImg)[0]['label'] for txt in text_output: output_txt[idx] = gr.Textbox(label=text_output,lines=1,max_lines=1,value=text_output,placeholder="Interpretation") input_sid = gr.Textbox( label="Speaker ID", info="Speaker ID", lines=1, max_lines=1, value="0", placeholder="Speaker ID. Valid only for mult-speaker model") input_speed = gr.Slider( minimum=0.1, maximum=10, value=1, step=0.1, label="Speed (larger->faster; smaller->slower)") text_to_speech(language_choices[0],language_to_models[language_choices[0]][0],text_output,input_sid,input_speed) output_audio[idx] = gr.Audio(label="Output") output_info[idx] = gr.HTML(label="Info") idx=idx+1 demo=gr.Interface(fn=text_to_speech, title="Image to Text Interpretation", inputs=inputsImg, outputs=[output_txt,output_audio,input_sid,input_speed], description="image to audio demo", article = "" ) demo.launch()