import gradio as gr from transformers import pipeline,WhisperProcessor, WhisperForConditionalGeneration import torch import librosa import datasets from transformers.pipelines.pt_utils import KeyDataset from tqdm.auto import tqdm image_to_text_model = pipeline("image-classification",model="microsoft/beit-base-patch16-224-pt22k-ft22k") def image_to_text(input_image): # Convertir la imagen a texto text_output = image_to_text_model(input_image)[0]['label'] print(text_output) #texts = transcriber(text_output) return text_output gr.Interface.from_pipeline(pipe, title="22k Image Classification", description="Object Recognition using Microsoft BEIT", examples = [], article = "Author: Rowel Atienza", ).launch()