import gradio as gr from transformers import AutoProcessor, BlipForConditionalGeneration, AutoTokenizer,SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan import librosa import numpy as np import torch import image_text_model import audio_model import open_clip #CONSTANTS # Carga el modelo de clasificación de imagen a texto blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large") blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") device = "cuda" if torch.cuda.is_available() else "cpu" blip_model_large.to(device) ##### IMAGE MODEL TO TEXT, MODEL 1 def generate_caption(processor, model, image, tokenizer=None, use_float_16=False): inputs = processor(images=image, return_tensors="pt").to(device) if use_float_16: inputs = inputs.to(torch.float16) generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) if tokenizer is not None: generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] else: generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption def generate_caption_coca(model, transform, image): im = transform(image).unsqueeze(0).to(device) with torch.no_grad(), torch.cuda.amp.autocast(): generated = model.generate(im, seq_len=20) return open_clip.decode(generated[0].detach()).split("")[0].replace("", "") def generate_captions_speech(image): caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image) print('generate_captions>>>'+caption_blip_large) return caption_blip_large,text_to_speech(caption_blip_large,"Surprise Me!") #####END IMAGE MODEL TO TEXT # Define la interfaz de usuario utilizando Gradio entradas y salidas inputsImg = [ gr.Image(type="pil", label="Imagen"), ] #Salidas es lo que genera de tetxo y el audio outputs = [ gr.Textbox(label="Caption generated by BLIP-large"),gr.Audio(type="numpy",label='Transcripcion')] title = "Clasificación de imagen a texto y conversión de texto a voz" description = "Carga una imagen y obtén una descripción de texto de lo que contiene la imagen, así como un archivo de audio de la trasncripcion de la imagen en audio descrito." examples = [] interface = gr.Interface(fn=generate_captions_speech, inputs=inputsImg, outputs=outputs, examples=examples, title=title, description=description) interface.launch()