import gradio as gr from transformers import pipeline,WhisperProcessor, WhisperForConditionalGeneration import torch import librosa checkpoint = "openai/whisper-base" # checkpoint = "/innev/open-ai/huggingface/openai/whisper-base" processor = WhisperProcessor.from_pretrained(checkpoint) model = WhisperForConditionalGeneration.from_pretrained(checkpoint) text_Interface=gr.Interface.load("models/nlpconnect/vit-gpt2-image-captioning") def greet(): return "Hello " with gr.Blocks() as demo: gr.Markdown("Start typing below and then click **Run** to see the output.") with gr.Row(): inp = gr.Image(type='pil') out = gr.Textbox() gr.Interface(fn=greet, inputs=inp, outputs=out) demo.launch() text_Interface.launch()