import gradio as gr from model import score_opportunity def predict_deal(amount, stage, industry, lead_score, email_count, meeting_count, close_date_gap): input_data = { "amount": amount, "stage": stage, "industry": industry, "lead_score": lead_score, "email_count": email_count, "meeting_count": meeting_count, "close_date_gap": close_date_gap } result = score_opportunity(input_data) return result['score'], result['risk'], result['recommendation'] with gr.Blocks(title="AI Deal Qualification Engine") as demo: gr.Markdown("# 🤖 AI-Powered B2B Deal Qualification Engine") with gr.Row(): amount = gr.Number(label="Amount") stage = gr.Dropdown(["Prospecting", "Qualified", "Proposal", "Negotiation", "Closed Won", "Closed Lost"], label="Stage") industry = gr.Textbox(label="Industry") lead_score = gr.Number(label="Lead Score") email_count = gr.Number(label="Email Count") meeting_count = gr.Number(label="Meeting Count") close_date_gap = gr.Number(label="Close Date Gap (days)") submit_btn = gr.Button("Predict Deal Quality") with gr.Row(): score = gr.Number(label="Score (0–100)", interactive=False) risk = gr.Textbox(label="Risk Level", interactive=False) recommendation = gr.Textbox(label="AI Recommendation", lines=2, interactive=False) submit_btn.click(fn=predict_deal, inputs=[amount, stage, industry, lead_score, email_count, meeting_count, close_date_gap], outputs=[score, risk, recommendation]) demo.launch()