Saptarshi003 commited on
Commit
8fe2e46
·
verified ·
1 Parent(s): 0c0fd0e

Upload 22 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ artifacts/caption_model.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from src.pipeline.predict import generate_caption
3
+
4
+ demo = gr.Interface(fn=generate_caption,
5
+ inputs=gr.Image(),
6
+ outputs=[gr.Textbox(label="Generated Caption", lines=3)],
7
+ )
8
+ demo.launch()
artifacts/caption_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3015c7f04bee25a4c070cb043a9d7ed8edf5d3817d0299576ffed442cb1a750f
3
+ size 217502431
artifacts/data_txt.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:349189a957c5c9d7ac2d46365981b556ce6d02b3facaf3a95c8249edc2d4be7a
3
+ size 34305968
artifacts/vocabulary.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25aee45770b60296f52c86aa049bf471cf284389972310dc6880bd9caf690e1f
3
+ size 784736
notebooks/Image_captioning.ipynb ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "colab": {
8
+ "base_uri": "https://localhost:8080/",
9
+ "height": 1000
10
+ },
11
+ "id": "nUu3FjibHfQL",
12
+ "outputId": "8f9e98eb-f627-49f9-dcae-47dfdde9cb1c"
13
+ },
14
+ "outputs": [],
15
+ "source": [
16
+ "!pip install keras==2.15.0 tensorflow==2.15.0"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {
23
+ "id": "3dlzV23EMp8e"
24
+ },
25
+ "outputs": [],
26
+ "source": [
27
+ "import os\n",
28
+ "os.environ['KERAS_BACKEND'] = 'tensorflow'\n",
29
+ "import pathlib\n",
30
+ "import re"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": null,
36
+ "metadata": {
37
+ "id": "vo6h7I0NNR2G"
38
+ },
39
+ "outputs": [],
40
+ "source": [
41
+ "import tensorflow as tf\n",
42
+ "import keras\n",
43
+ "import numpy as np\n",
44
+ "from keras import layers"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": null,
50
+ "metadata": {
51
+ "colab": {
52
+ "base_uri": "https://localhost:8080/"
53
+ },
54
+ "id": "FXa1ANO0NdPB",
55
+ "outputId": "df1c87dd-c04f-469d-ec04-4b81e2c7917e"
56
+ },
57
+ "outputs": [
58
+ {
59
+ "name": "stdout",
60
+ "output_type": "stream",
61
+ "text": [
62
+ "2.15.0\n",
63
+ "2.15.0\n",
64
+ "tensorflow\n"
65
+ ]
66
+ }
67
+ ],
68
+ "source": [
69
+ "print(keras.__version__)\n",
70
+ "print(tf.__version__)\n",
71
+ "print(keras.backend.backend())"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": null,
77
+ "metadata": {
78
+ "id": "iGRrFrjo-VQL"
79
+ },
80
+ "outputs": [],
81
+ "source": [
82
+ "# Path to the images\n",
83
+ "IMAGES_PATH = \"Flicker8k_Dataset\"\n",
84
+ "\n",
85
+ "# Desired image dimensions\n",
86
+ "IMAGE_SIZE = (299, 299)\n",
87
+ "\n",
88
+ "# Vocabulary size\n",
89
+ "VOCAB_SIZE = 10000\n",
90
+ "\n",
91
+ "# Fixed length allowed for any sequence\n",
92
+ "SEQ_LENGTH = 25\n",
93
+ "\n",
94
+ "# Dimension for the image embeddings and token embeddings\n",
95
+ "EMBED_DIM = 512\n",
96
+ "\n",
97
+ "# Per-layer units in the feed-forward network\n",
98
+ "FF_DIM = 512\n",
99
+ "\n",
100
+ "# Other training parameters\n",
101
+ "BATCH_SIZE = 64\n",
102
+ "EPOCHS = 30\n",
103
+ "AUTOTUNE = tf.data.AUTOTUNE"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": null,
109
+ "metadata": {
110
+ "colab": {
111
+ "base_uri": "https://localhost:8080/",
112
+ "height": 36
113
+ },
114
+ "id": "Yiy02CsNO12W",
115
+ "outputId": "0f8b9a5e-c590-4b12-ec51-82741fadf4d9"
116
+ },
117
+ "outputs": [],
118
+ "source": [
119
+ "path = pathlib.Path(\".\")\n",
120
+ "keras.utils.get_file(\n",
121
+ " origin='https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_Dataset.zip',\n",
122
+ " cache_dir='.',\n",
123
+ " cache_subdir=path,\n",
124
+ " extract=True)\n",
125
+ "keras.utils.get_file(\n",
126
+ " origin='https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_text.zip',\n",
127
+ " cache_dir='.',\n",
128
+ " cache_subdir=path,\n",
129
+ " extract=True)"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": null,
135
+ "metadata": {
136
+ "id": "8ChgFWRLUzhJ"
137
+ },
138
+ "outputs": [],
139
+ "source": [
140
+ "dataset = pathlib.Path(path, \"Flickr8k.token.txt\").read_text(encoding='utf-8').splitlines()"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "code",
145
+ "execution_count": null,
146
+ "metadata": {
147
+ "colab": {
148
+ "base_uri": "https://localhost:8080/"
149
+ },
150
+ "id": "Tp4TSNVZBlEt",
151
+ "outputId": "42113a83-cc68-4ed3-a630-8aba8a2b20d6"
152
+ },
153
+ "outputs": [],
154
+ "source": [
155
+ "dataset"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "metadata": {
162
+ "id": "qYtr55VMWTTy"
163
+ },
164
+ "outputs": [],
165
+ "source": [
166
+ "dataset = [line.split('\\t') for line in dataset]"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "code",
171
+ "execution_count": null,
172
+ "metadata": {
173
+ "colab": {
174
+ "base_uri": "https://localhost:8080/"
175
+ },
176
+ "id": "9y18xIyfBovq",
177
+ "outputId": "7896d304-5864-46d8-8b63-945dfebd3151"
178
+ },
179
+ "outputs": [],
180
+ "source": [
181
+ "dataset"
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": null,
187
+ "metadata": {
188
+ "id": "aMQbS8ueZzii"
189
+ },
190
+ "outputs": [],
191
+ "source": [
192
+ "dataset = [[os.path.join(IMAGES_PATH,fname.split('#')[0].strip()), caption] for (fname, caption) in dataset]"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "code",
197
+ "execution_count": null,
198
+ "metadata": {
199
+ "colab": {
200
+ "base_uri": "https://localhost:8080/"
201
+ },
202
+ "id": "l7w7CxPuZtMG",
203
+ "outputId": "e3ca1665-277b-4c81-88d3-5c2c39ccd628"
204
+ },
205
+ "outputs": [],
206
+ "source": [
207
+ "dataset"
208
+ ]
209
+ },
210
+ {
211
+ "cell_type": "code",
212
+ "execution_count": null,
213
+ "metadata": {
214
+ "colab": {
215
+ "base_uri": "https://localhost:8080/"
216
+ },
217
+ "id": "mkMvwXnZBFzD",
218
+ "outputId": "774cd7f3-0ffc-4273-862d-feb4366c3e20"
219
+ },
220
+ "outputs": [],
221
+ "source": [
222
+ "for i in dataset:\n",
223
+ " print(i)\n",
224
+ " break"
225
+ ]
226
+ },
227
+ {
228
+ "cell_type": "code",
229
+ "execution_count": null,
230
+ "metadata": {
231
+ "id": "kqthDk6gZV3i"
232
+ },
233
+ "outputs": [],
234
+ "source": [
235
+ "caption_mapping = {}\n",
236
+ "text_data = []\n",
237
+ "X_en_data = []\n",
238
+ "X_de_data = []\n",
239
+ "Y_data = []"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "execution_count": null,
245
+ "metadata": {
246
+ "id": "yWbcI72w9Xv2"
247
+ },
248
+ "outputs": [],
249
+ "source": [
250
+ "for img_name, caption in dataset:\n",
251
+ " if img_name.endswith(\"jpg\"):\n",
252
+ " X_de_data.append(\"<start> \" + caption.strip().replace(\".\", \"\"))\n",
253
+ " Y_data.append(caption.strip().replace(\".\", \"\") + \" <end>\")\n",
254
+ " text_data.append(\"<start> \" + caption.strip().replace(\".\", \"\") + \" <end>\")\n",
255
+ " X_en_data.append(img_name)\n",
256
+ "\n",
257
+ "\n",
258
+ " if img_name in caption_mapping:\n",
259
+ " caption_mapping[img_name].append(caption)\n",
260
+ " else:\n",
261
+ " caption_mapping[img_name] = [caption]"
262
+ ]
263
+ },
264
+ {
265
+ "cell_type": "code",
266
+ "execution_count": null,
267
+ "metadata": {
268
+ "id": "aqLKJwdVSydw"
269
+ },
270
+ "outputs": [],
271
+ "source": [
272
+ "for i in X_de_data:\n",
273
+ " if len(i) <= 2:\n",
274
+ " print(\"Y\")"
275
+ ]
276
+ },
277
+ {
278
+ "cell_type": "code",
279
+ "execution_count": null,
280
+ "metadata": {
281
+ "colab": {
282
+ "base_uri": "https://localhost:8080/"
283
+ },
284
+ "id": "6RDJi5j4_C_z",
285
+ "outputId": "a6b9a4e5-94a3-40cc-98e6-8454e4e268ab"
286
+ },
287
+ "outputs": [],
288
+ "source": [
289
+ "print(X_en_data[0])\n",
290
+ "print(X_de_data[0])\n",
291
+ "print(Y_data[0])"
292
+ ]
293
+ },
294
+ {
295
+ "cell_type": "code",
296
+ "execution_count": null,
297
+ "metadata": {
298
+ "id": "L_l0R04eJZnQ"
299
+ },
300
+ "outputs": [],
301
+ "source": [
302
+ "train_size=0.8\n",
303
+ "shuffle=True\n",
304
+ "np.random.seed(42)"
305
+ ]
306
+ },
307
+ {
308
+ "cell_type": "code",
309
+ "execution_count": null,
310
+ "metadata": {
311
+ "colab": {
312
+ "base_uri": "https://localhost:8080/"
313
+ },
314
+ "id": "f-EnvEgh8sOB",
315
+ "outputId": "0cc36fe3-6cac-48ea-bcd4-9ace27dd5325"
316
+ },
317
+ "outputs": [],
318
+ "source": [
319
+ "zipped = list(zip(X_en_data, X_de_data, Y_data))\n",
320
+ "np.random.shuffle(zipped)\n",
321
+ "X_en_data, X_de_data, Y_data = zip(*zipped)\n",
322
+ "print(X_en_data[0])\n",
323
+ "print(X_de_data[0])\n",
324
+ "print(Y_data[0])"
325
+ ]
326
+ },
327
+ {
328
+ "cell_type": "code",
329
+ "execution_count": null,
330
+ "metadata": {
331
+ "id": "Z7EFBHhdPeLs"
332
+ },
333
+ "outputs": [],
334
+ "source": [
335
+ "train_size = int(len(X_en_data)*train_size)\n",
336
+ "X_train_en = list(X_en_data[:train_size])\n",
337
+ "X_train_de = list(X_de_data[:train_size])\n",
338
+ "Y_train = list(Y_data[:train_size])\n",
339
+ "X_valid_en = list(X_en_data[train_size:])\n",
340
+ "X_valid_de = list(X_de_data[train_size:])\n",
341
+ "Y_valid = list(Y_data[train_size:])"
342
+ ]
343
+ },
344
+ {
345
+ "cell_type": "code",
346
+ "execution_count": null,
347
+ "metadata": {
348
+ "colab": {
349
+ "base_uri": "https://localhost:8080/"
350
+ },
351
+ "id": "VEACJzQ0Tccm",
352
+ "outputId": "0c534618-1218-49df-ec73-54bdaf6c0452"
353
+ },
354
+ "outputs": [],
355
+ "source": [
356
+ "print(X_train_en[0])\n",
357
+ "print(X_train_de[0])\n",
358
+ "print(Y_train[0])\n",
359
+ "print(X_valid_en[0])\n",
360
+ "print(X_valid_de[0])\n",
361
+ "print(Y_valid[0])"
362
+ ]
363
+ },
364
+ {
365
+ "cell_type": "code",
366
+ "execution_count": null,
367
+ "metadata": {
368
+ "id": "tZAf67OXAmxn"
369
+ },
370
+ "outputs": [],
371
+ "source": [
372
+ "strip_chars = \"!\\\"#$%&'()*+,-./:;=?@[\\]^_`{|}~\"\n",
373
+ "def custom_standardization(input_string):\n",
374
+ " lowercase = tf.strings.lower(input_string)\n",
375
+ " return tf.strings.regex_replace(lowercase, f'{re.escape(strip_chars)}', '')"
376
+ ]
377
+ },
378
+ {
379
+ "cell_type": "code",
380
+ "execution_count": null,
381
+ "metadata": {
382
+ "id": "d6v0_3TuJZaG"
383
+ },
384
+ "outputs": [],
385
+ "source": [
386
+ "vectorization = keras.layers.TextVectorization(\n",
387
+ " max_tokens=VOCAB_SIZE,\n",
388
+ " output_mode=\"int\",\n",
389
+ " output_sequence_length=SEQ_LENGTH,\n",
390
+ " standardize=custom_standardization,\n",
391
+ " )\n",
392
+ "\n",
393
+ "vectorization.adapt(text_data)\n",
394
+ "vocab = np.array(vectorization.get_vocabulary())\n",
395
+ "np.save('./artifacts/vocabulary.npy', vocab)"
396
+ ]
397
+ },
398
+ {
399
+ "cell_type": "code",
400
+ "execution_count": null,
401
+ "metadata": {
402
+ "id": "WcXsq2LzNpda"
403
+ },
404
+ "outputs": [],
405
+ "source": [
406
+ "def decode_and_resize(img_path):\n",
407
+ " img = tf.io.read_file(img_path)\n",
408
+ " img = tf.image.decode_jpeg(img, channels=3)\n",
409
+ " img = tf.image.resize(img, IMAGE_SIZE)\n",
410
+ " img = tf.image.convert_image_dtype(img, tf.float32)\n",
411
+ " return img\n",
412
+ "\n",
413
+ "\n",
414
+ "def process_input(img_cap, y_captions):\n",
415
+ " img_path, x_captions = img_cap\n",
416
+ " return ((decode_and_resize(img_path), vectorization(x_captions)), vectorization(y_captions))\n",
417
+ "\n",
418
+ "\n",
419
+ "def make_dataset(images, x_captions, y_captions):\n",
420
+ " dataset = tf.data.Dataset.from_tensor_slices(((images, x_captions), y_captions))\n",
421
+ " dataset = dataset.map(process_input, num_parallel_calls=AUTOTUNE)\n",
422
+ " dataset = dataset.batch(BATCH_SIZE).prefetch(AUTOTUNE)\n",
423
+ "\n",
424
+ " return dataset\n",
425
+ "\n",
426
+ "\n",
427
+ "\n",
428
+ "train_dataset = make_dataset(X_train_en, X_train_de, Y_train)\n",
429
+ "\n",
430
+ "valid_dataset = make_dataset(X_valid_en, X_valid_de, Y_valid)\n"
431
+ ]
432
+ },
433
+ {
434
+ "cell_type": "code",
435
+ "execution_count": null,
436
+ "metadata": {
437
+ "id": "CC_icKqG5xGg"
438
+ },
439
+ "outputs": [],
440
+ "source": [
441
+ "image_augmentation = keras.Sequential(\n",
442
+ " [\n",
443
+ " keras.layers.RandomFlip(\"horizontal\"),\n",
444
+ " keras.layers.RandomRotation(0.2),\n",
445
+ " keras.layers.RandomContrast(0.3),\n",
446
+ " ]\n",
447
+ ")\n",
448
+ "@keras.saving.register_keras_serializable()\n",
449
+ "def get_cnn_model():\n",
450
+ " base_model = keras.applications.efficientnet.EfficientNetB0(\n",
451
+ " input_shape=(*IMAGE_SIZE, 3),\n",
452
+ " include_top=False,\n",
453
+ " weights=\"imagenet\"\n",
454
+ " )\n",
455
+ " base_model.trainable = False\n",
456
+ " base_model_out = base_model.output\n",
457
+ " base_model_out = layers.Reshape((-1, base_model_out.shape[-1]))(base_model_out)\n",
458
+ " cnn_model = keras.models.Model(base_model.input, base_model_out)\n",
459
+ " return cnn_model\n",
460
+ "\n",
461
+ "@keras.saving.register_keras_serializable()\n",
462
+ "class TransformerEncoderBlock(layers.Layer):\n",
463
+ " def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):\n",
464
+ " super().__init__(**kwargs)\n",
465
+ " self.embed_dim = embed_dim\n",
466
+ " self.dense_dim = dense_dim\n",
467
+ " self.num_heads = num_heads\n",
468
+ " self.attention_1 = layers.MultiHeadAttention(\n",
469
+ " num_heads=num_heads, key_dim=embed_dim, dropout=0.0\n",
470
+ " )\n",
471
+ " self.layernorm_1 = layers.LayerNormalization()\n",
472
+ " self.layernorm_2 = layers.LayerNormalization()\n",
473
+ " self.dense_1 = layers.Dense(embed_dim, activation=\"relu\")\n",
474
+ "\n",
475
+ " def get_config(self):\n",
476
+ " base_config = super().get_config()\n",
477
+ " config = {\n",
478
+ " \"embed_dim\": self.embed_dim,\n",
479
+ " \"dense_dim\": self.dense_dim,\n",
480
+ " \"num_heads\": self.num_heads,\n",
481
+ " }\n",
482
+ " return {**base_config, **config}\n",
483
+ "\n",
484
+ "\n",
485
+ " def call(self, inputs, training):\n",
486
+ " inputs = self.layernorm_1(inputs)\n",
487
+ " inputs = self.dense_1(inputs)\n",
488
+ "\n",
489
+ " attention_output_1 = self.attention_1(\n",
490
+ " query=inputs,\n",
491
+ " value=inputs,\n",
492
+ " key=inputs,\n",
493
+ " training=training,\n",
494
+ " )\n",
495
+ " out_1 = self.layernorm_2(inputs + attention_output_1)\n",
496
+ " return out_1\n",
497
+ "\n",
498
+ "@keras.saving.register_keras_serializable()\n",
499
+ "class PositionalEmbedding(layers.Layer):\n",
500
+ " def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):\n",
501
+ " super().__init__(**kwargs)\n",
502
+ " self.token_embeddings = layers.Embedding(\n",
503
+ " input_dim=vocab_size, output_dim=embed_dim, mask_zero=True\n",
504
+ " )\n",
505
+ " self.position_embeddings = layers.Embedding(\n",
506
+ " input_dim=sequence_length, output_dim=embed_dim\n",
507
+ " )\n",
508
+ " self.sequence_length = sequence_length\n",
509
+ " self.vocab_size = vocab_size\n",
510
+ " self.embed_dim = embed_dim\n",
511
+ "\n",
512
+ " self.add = layers.Add()\n",
513
+ "\n",
514
+ " def get_config(self):\n",
515
+ " base_config = super().get_config()\n",
516
+ " config = {\n",
517
+ " \"sequence_length\": self.sequence_length,\n",
518
+ " \"vocab_size\": self.vocab_size,\n",
519
+ " \"embed_dim\": self.embed_dim,\n",
520
+ " }\n",
521
+ " return {**base_config, **config}\n",
522
+ "\n",
523
+ " def call(self, seq):\n",
524
+ " seq = self.token_embeddings(seq)\n",
525
+ "\n",
526
+ " x = tf.range(tf.shape(seq)[1])\n",
527
+ " x = x[tf.newaxis, :]\n",
528
+ " x = self.position_embeddings(x)\n",
529
+ "\n",
530
+ " return self.add([seq,x])\n",
531
+ "\n",
532
+ "@keras.saving.register_keras_serializable()\n",
533
+ "class TransformerDecoderBlock(layers.Layer):\n",
534
+ " def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):\n",
535
+ " super().__init__(**kwargs)\n",
536
+ " self.embed_dim = embed_dim\n",
537
+ " self.ff_dim = ff_dim\n",
538
+ " self.num_heads = num_heads\n",
539
+ " self.attention_1 = layers.MultiHeadAttention(\n",
540
+ " num_heads=num_heads, key_dim=embed_dim, dropout=0.1\n",
541
+ " )\n",
542
+ " self.attention_2 = layers.MultiHeadAttention(\n",
543
+ " num_heads=num_heads, key_dim=embed_dim, dropout=0.1\n",
544
+ " )\n",
545
+ " self.ffn_layer_1 = layers.Dense(ff_dim, activation=\"relu\")\n",
546
+ " self.ffn_layer_2 = layers.Dense(embed_dim)\n",
547
+ "\n",
548
+ " self.layernorm_1 = layers.LayerNormalization()\n",
549
+ " self.layernorm_2 = layers.LayerNormalization()\n",
550
+ " self.layernorm_3 = layers.LayerNormalization()\n",
551
+ "\n",
552
+ " self.embedding = PositionalEmbedding(\n",
553
+ " embed_dim=EMBED_DIM,\n",
554
+ " sequence_length=SEQ_LENGTH,\n",
555
+ " vocab_size=VOCAB_SIZE,\n",
556
+ " )\n",
557
+ " self.out = layers.Dense(VOCAB_SIZE, activation=\"softmax\")\n",
558
+ "\n",
559
+ " self.dropout_1 = layers.Dropout(0.3)\n",
560
+ " self.dropout_2 = layers.Dropout(0.5)\n",
561
+ " self.supports_masking = True\n",
562
+ "\n",
563
+ " def get_config(self):\n",
564
+ " base_config = super().get_config()\n",
565
+ " config = {\n",
566
+ " \"embed_dim\": self.embed_dim,\n",
567
+ " \"ff_dim\": self.ff_dim,\n",
568
+ " \"num_heads\": self.num_heads,\n",
569
+ "\n",
570
+ " }\n",
571
+ " return {**base_config, **config}\n",
572
+ "\n",
573
+ "\n",
574
+ "\n",
575
+ " def call(self, inputs, encoder_outputs, training, mask=None):\n",
576
+ " inputs = self.embedding(inputs)\n",
577
+ "\n",
578
+ " attention_output_1 = self.attention_1(\n",
579
+ " query=inputs,\n",
580
+ " value=inputs,\n",
581
+ " key=inputs,\n",
582
+ " training=training,\n",
583
+ " use_causal_mask=True\n",
584
+ " )\n",
585
+ " out_1 = self.layernorm_1(inputs + attention_output_1)\n",
586
+ "\n",
587
+ " attention_output_2 = self.attention_2(\n",
588
+ " query=out_1,\n",
589
+ " value=encoder_outputs,\n",
590
+ " key=encoder_outputs,\n",
591
+ " training=training,\n",
592
+ " )\n",
593
+ " out_2 = self.layernorm_2(out_1 + attention_output_2)\n",
594
+ "\n",
595
+ " ffn_out = self.ffn_layer_1(out_2)\n",
596
+ " ffn_out = self.dropout_1(ffn_out, training=training)\n",
597
+ " ffn_out = self.ffn_layer_2(ffn_out)\n",
598
+ "\n",
599
+ " ffn_out = self.layernorm_3(ffn_out + out_2, training=training)\n",
600
+ " ffn_out = self.dropout_2(ffn_out, training=training)\n",
601
+ " preds = self.out(ffn_out)\n",
602
+ " return preds\n",
603
+ "\n",
604
+ "\n",
605
+ "@keras.saving.register_keras_serializable()\n",
606
+ "class ImageCaptioningModel(keras.Model):\n",
607
+ " def __init__(\n",
608
+ " self,\n",
609
+ " cnn_model,\n",
610
+ " encoder,\n",
611
+ " decoder,\n",
612
+ " image_aug=None,\n",
613
+ " **kwargs\n",
614
+ " ):\n",
615
+ " super().__init__(**kwargs)\n",
616
+ " self.cnn_model = cnn_model\n",
617
+ " self.encoder = encoder\n",
618
+ " self.decoder = decoder\n",
619
+ " self.image_aug = image_aug\n",
620
+ "\n",
621
+ " def get_config(self):\n",
622
+ " base_config = super().get_config()\n",
623
+ " config = {\n",
624
+ " \"cnn_model\": self.cnn_model,\n",
625
+ " \"encoder\": self.encoder,\n",
626
+ " \"decoder\": self.decoder,\n",
627
+ " \"image_aug\": self.image_aug,\n",
628
+ " }\n",
629
+ " return {**base_config, **config}\n",
630
+ "\n",
631
+ " @classmethod\n",
632
+ " def from_config(cls, config):\n",
633
+ " # Note that you can also use [`keras.saving.deserialize_keras_object`](/api/models/model_saving_apis/serialization_utils#deserializekerasobject-function) here\n",
634
+ " config[\"cnn_model\"] = keras.saving.deserialize_keras_object(config[\"cnn_model\"])\n",
635
+ " config[\"encoder\"] = keras.saving.deserialize_keras_object(config[\"encoder\"])\n",
636
+ " config[\"decoder\"] = keras.saving.deserialize_keras_object(config[\"decoder\"])\n",
637
+ " config[\"image_aug\"] = keras.saving.deserialize_keras_object(config[\"image_aug\"])\n",
638
+ "\n",
639
+ " # Instantiate the ImageCaptioningModel with the remaining configuration\n",
640
+ " return cls(**config)\n",
641
+ "\n",
642
+ " def call(self, inputs, training):\n",
643
+ " img, caption = inputs\n",
644
+ " if self.image_aug:\n",
645
+ " img = self.image_aug(img)\n",
646
+ " img_embed = self.cnn_model(img)\n",
647
+ " encoder_out = self.encoder(img_embed, training=training)\n",
648
+ " pred = self.decoder(caption, encoder_out, training=training)\n",
649
+ " return pred\n",
650
+ "\n",
651
+ "\n"
652
+ ]
653
+ },
654
+ {
655
+ "cell_type": "code",
656
+ "execution_count": null,
657
+ "metadata": {
658
+ "id": "MGCXWbEY6tTn"
659
+ },
660
+ "outputs": [],
661
+ "source": [
662
+ "cnn_model = get_cnn_model()\n",
663
+ "encoder = TransformerEncoderBlock(embed_dim=EMBED_DIM, dense_dim=FF_DIM, num_heads=1)\n",
664
+ "decoder = TransformerDecoderBlock(embed_dim=EMBED_DIM, ff_dim=FF_DIM, num_heads=2)\n",
665
+ "caption_model = ImageCaptioningModel(\n",
666
+ " cnn_model=cnn_model,\n",
667
+ " encoder=encoder,\n",
668
+ " decoder=decoder,\n",
669
+ " image_aug=image_augmentation,\n",
670
+ ")"
671
+ ]
672
+ },
673
+ {
674
+ "cell_type": "code",
675
+ "execution_count": null,
676
+ "metadata": {
677
+ "colab": {
678
+ "base_uri": "https://localhost:8080/",
679
+ "height": 391
680
+ },
681
+ "id": "LtUx3PjMB6aJ",
682
+ "outputId": "3cdc513a-321d-425b-a617-549e42fbf404"
683
+ },
684
+ "outputs": [],
685
+ "source": [
686
+ "\n",
687
+ "early_stopping = keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)\n",
688
+ "\n",
689
+ "\n",
690
+ "@keras.saving.register_keras_serializable()\n",
691
+ "class LRSchedule(keras.optimizers.schedules.LearningRateSchedule):\n",
692
+ " def __init__(self, post_warmup_learning_rate, warmup_steps, **kwargs):\n",
693
+ " super().__init__(**kwargs)\n",
694
+ " self.post_warmup_learning_rate = post_warmup_learning_rate\n",
695
+ " self.warmup_steps = warmup_steps\n",
696
+ "\n",
697
+ " def get_config(self):\n",
698
+ " config = {\n",
699
+ " \"post_warmup_learning_rate\": self.post_warmup_learning_rate,\n",
700
+ " \"warmup_steps\": self.warmup_steps,\n",
701
+ " }\n",
702
+ " return config\n",
703
+ "\n",
704
+ " def __call__(self, step):\n",
705
+ " global_step = tf.cast(step, tf.float32)\n",
706
+ " warmup_steps = tf.cast(self.warmup_steps, tf.float32)\n",
707
+ " warmup_progress = global_step / warmup_steps\n",
708
+ " warmup_learning_rate = self.post_warmup_learning_rate * warmup_progress\n",
709
+ " return tf.cond(\n",
710
+ " global_step < warmup_steps,\n",
711
+ " lambda: warmup_learning_rate,\n",
712
+ " lambda: self.post_warmup_learning_rate,\n",
713
+ " )\n",
714
+ "\n",
715
+ "\n",
716
+ "num_train_steps = len(train_dataset) * EPOCHS\n",
717
+ "num_warmup_steps = num_train_steps // 15\n",
718
+ "lr_schedule = LRSchedule(post_warmup_learning_rate=1e-4, warmup_steps=num_warmup_steps)\n",
719
+ "\n",
720
+ "caption_model.compile(optimizer=keras.optimizers.Adam(lr_schedule), loss='sparse_categorical_crossentropy',\n",
721
+ " metrics=['accuracy'])\n",
722
+ "\n",
723
+ "caption_model.fit(\n",
724
+ " train_dataset,\n",
725
+ " epochs=EPOCHS,\n",
726
+ " validation_data=valid_dataset,\n",
727
+ " callbacks=[early_stopping],\n",
728
+ ")"
729
+ ]
730
+ },
731
+ {
732
+ "cell_type": "code",
733
+ "execution_count": null,
734
+ "metadata": {
735
+ "id": "M10k_8_gBKxz"
736
+ },
737
+ "outputs": [],
738
+ "source": [
739
+ "caption_model.save(\"caption_model.keras\")"
740
+ ]
741
+ },
742
+ {
743
+ "cell_type": "code",
744
+ "execution_count": null,
745
+ "metadata": {
746
+ "id": "f1FD15MiBQSh"
747
+ },
748
+ "outputs": [],
749
+ "source": [
750
+ "loaded_model = keras.models.load_model(\"caption_model.keras\", compile=True)"
751
+ ]
752
+ },
753
+ {
754
+ "cell_type": "code",
755
+ "execution_count": null,
756
+ "metadata": {
757
+ "colab": {
758
+ "base_uri": "https://localhost:8080/"
759
+ },
760
+ "id": "ULoizN2kfR2W",
761
+ "outputId": "fa3f0e8f-f1cc-4821-8f37-3977c6feb047"
762
+ },
763
+ "outputs": [],
764
+ "source": [
765
+ "caption_model.summary()"
766
+ ]
767
+ },
768
+ {
769
+ "cell_type": "code",
770
+ "execution_count": null,
771
+ "metadata": {
772
+ "colab": {
773
+ "base_uri": "https://localhost:8080/"
774
+ },
775
+ "id": "MUTEhm28fVdN",
776
+ "outputId": "b020cfe6-b3e4-4c84-cf58-e59a233c6035"
777
+ },
778
+ "outputs": [],
779
+ "source": [
780
+ "loaded_model.summary()"
781
+ ]
782
+ },
783
+ {
784
+ "cell_type": "code",
785
+ "execution_count": null,
786
+ "metadata": {
787
+ "colab": {
788
+ "base_uri": "https://localhost:8080/"
789
+ },
790
+ "id": "k4H_CsBUYBSi",
791
+ "outputId": "590ecbca-1980-4456-89f1-ce0b2643506f"
792
+ },
793
+ "outputs": [],
794
+ "source": [
795
+ "caption_model.evaluate(valid_dataset)"
796
+ ]
797
+ },
798
+ {
799
+ "cell_type": "code",
800
+ "execution_count": null,
801
+ "metadata": {
802
+ "colab": {
803
+ "base_uri": "https://localhost:8080/"
804
+ },
805
+ "id": "xzYtGvSPYA5H",
806
+ "outputId": "5b103038-b02d-491a-d08c-c252682590fd"
807
+ },
808
+ "outputs": [],
809
+ "source": [
810
+ "loaded_model.evaluate(valid_dataset)"
811
+ ]
812
+ },
813
+ {
814
+ "cell_type": "code",
815
+ "execution_count": null,
816
+ "metadata": {
817
+ "id": "UvRoJqZ-Xp7g"
818
+ },
819
+ "outputs": [],
820
+ "source": [
821
+ "import matplotlib.pyplot as plt"
822
+ ]
823
+ },
824
+ {
825
+ "cell_type": "code",
826
+ "execution_count": null,
827
+ "metadata": {
828
+ "colab": {
829
+ "base_uri": "https://localhost:8080/",
830
+ "height": 452
831
+ },
832
+ "id": "5edj0qS3YCTZ",
833
+ "outputId": "fefb8277-944e-4a42-aa64-aef5df6ab92b"
834
+ },
835
+ "outputs": [],
836
+ "source": [
837
+ "\n",
838
+ "\n",
839
+ "vocab = vectorization.get_vocabulary()\n",
840
+ "index_lookup = dict(zip(range(len(vocab)), vocab))\n",
841
+ "max_decoded_sentence_length = SEQ_LENGTH - 1\n",
842
+ "valid_images = list(X_train_en)\n",
843
+ "\n",
844
+ "\n",
845
+ "def generate_caption():\n",
846
+ " # Select a random image from the validation dataset\n",
847
+ " sample_img = np.random.choice(valid_images)\n",
848
+ "\n",
849
+ " # Read the image from the disk\n",
850
+ " sample_img = decode_and_resize(sample_img)\n",
851
+ " img = sample_img.numpy().clip(0, 255).astype(np.uint8)\n",
852
+ " plt.imshow(img)\n",
853
+ " plt.show()\n",
854
+ "\n",
855
+ " # Pass the image to the CNN\n",
856
+ " img = tf.expand_dims(sample_img, 0)\n",
857
+ " img = caption_model.cnn_model(img)\n",
858
+ "\n",
859
+ " # Pass the image features to the Transformer encoder\n",
860
+ " encoded_img = caption_model.encoder(img, training=False)\n",
861
+ "\n",
862
+ " # Generate the caption using the Transformer decoder\n",
863
+ " decoded_caption = \"<start> \"\n",
864
+ " for i in range(max_decoded_sentence_length):\n",
865
+ " tokenized_caption = vectorization([decoded_caption])\n",
866
+ " mask = tf.math.not_equal(tokenized_caption, 0)\n",
867
+ " predictions = caption_model.decoder(\n",
868
+ " tokenized_caption, encoded_img, training=False, mask=mask\n",
869
+ " )\n",
870
+ " sampled_token_index = np.argmax(predictions[0, i, :])\n",
871
+ " sampled_token = index_lookup[sampled_token_index]\n",
872
+ " if sampled_token == \"<end>\":\n",
873
+ " break\n",
874
+ " decoded_caption += \" \" + sampled_token\n",
875
+ "\n",
876
+ " decoded_caption = decoded_caption.replace(\"<start> \", \"\")\n",
877
+ " decoded_caption = decoded_caption.replace(\" <end>\", \"\").strip()\n",
878
+ " print(\"Predicted Caption: \", decoded_caption)\n",
879
+ "\n",
880
+ "\n",
881
+ "# Check predictions for a few samples\n",
882
+ "generate_caption()\n"
883
+ ]
884
+ },
885
+ {
886
+ "cell_type": "code",
887
+ "execution_count": null,
888
+ "metadata": {
889
+ "colab": {
890
+ "base_uri": "https://localhost:8080/",
891
+ "height": 715
892
+ },
893
+ "id": "3zRF5hAEbOdm",
894
+ "outputId": "85611bc9-70b9-4282-aac4-53d3af5c2c18"
895
+ },
896
+ "outputs": [],
897
+ "source": [
898
+ "\n",
899
+ "\n",
900
+ "vocab = vectorization.get_vocabulary()\n",
901
+ "index_lookup = dict(zip(range(len(vocab)), vocab))\n",
902
+ "max_decoded_sentence_length = SEQ_LENGTH - 1\n",
903
+ "valid_images = list(X_train_en)\n",
904
+ "\n",
905
+ "\n",
906
+ "def generate_caption():\n",
907
+ " # Select a random image from the validation dataset\n",
908
+ " sample_img = np.random.choice(valid_images)\n",
909
+ "\n",
910
+ " # Read the image from the disk\n",
911
+ " sample_img = decode_and_resize(sample_img)\n",
912
+ " img = sample_img.numpy().clip(0, 255).astype(np.uint8)\n",
913
+ " plt.imshow(img)\n",
914
+ " plt.show()\n",
915
+ "\n",
916
+ " # Pass the image to the CNN\n",
917
+ " img = tf.expand_dims(sample_img, 0)\n",
918
+ " img = loaded_model.cnn_model(img)\n",
919
+ "\n",
920
+ " # Pass the image features to the Transformer encoder\n",
921
+ " encoded_img = loaded_model.encoder(img, training=False)\n",
922
+ "\n",
923
+ " # Generate the caption using the Transformer decoder\n",
924
+ " decoded_caption = \"<start> \"\n",
925
+ " for i in range(max_decoded_sentence_length):\n",
926
+ " tokenized_caption = vectorization([decoded_caption])\n",
927
+ " mask = tf.math.not_equal(tokenized_caption, 0)\n",
928
+ " predictions = loaded_model.decoder(\n",
929
+ " tokenized_caption, encoded_img, training=False, mask=mask\n",
930
+ " )\n",
931
+ " sampled_token_index = np.argmax(predictions[0, i, :])\n",
932
+ " sampled_token = index_lookup[sampled_token_index]\n",
933
+ " if sampled_token == \"<end>\":\n",
934
+ " break\n",
935
+ " decoded_caption += \" \" + sampled_token\n",
936
+ "\n",
937
+ " decoded_caption = decoded_caption.replace(\"<start> \", \"\")\n",
938
+ " decoded_caption = decoded_caption.replace(\" <end>\", \"\").strip()\n",
939
+ " print(\"Predicted Caption: \", decoded_caption)\n",
940
+ "\n",
941
+ "\n",
942
+ "# Check predictions for a few samples\n",
943
+ "generate_caption()\n"
944
+ ]
945
+ },
946
+ {
947
+ "cell_type": "code",
948
+ "execution_count": null,
949
+ "metadata": {
950
+ "id": "4n5iXcJwwB9-"
951
+ },
952
+ "outputs": [],
953
+ "source": []
954
+ }
955
+ ],
956
+ "metadata": {
957
+ "accelerator": "GPU",
958
+ "colab": {
959
+ "gpuType": "T4",
960
+ "provenance": []
961
+ },
962
+ "kernelspec": {
963
+ "display_name": "Python 3",
964
+ "name": "python3"
965
+ },
966
+ "language_info": {
967
+ "name": "python"
968
+ }
969
+ },
970
+ "nbformat": 4,
971
+ "nbformat_minor": 0
972
+ }
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ keras==2.15.0
2
+ tensorflow==2.15.0
3
+ numpy
4
+ matplotlib
5
+ gradio
src/__init__.py ADDED
File without changes
src/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (194 Bytes). View file
 
src/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (210 Bytes). View file
 
src/components/__init__.py ADDED
File without changes
src/components/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (205 Bytes). View file
 
src/components/__pycache__/model.cpython-310.pyc ADDED
Binary file (7.02 kB). View file
 
src/components/model.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import keras
2
+ from keras import layers
3
+ import tensorflow as tf
4
+
5
+ IMAGE_SIZE = (299, 299)
6
+ VOCAB_SIZE = 10000
7
+ SEQ_LENGTH = 25
8
+ EMBED_DIM = 512
9
+ FF_DIM = 512
10
+
11
+
12
+ image_augmentation = keras.Sequential(
13
+ [
14
+ keras.layers.RandomFlip("horizontal"),
15
+ keras.layers.RandomRotation(0.2),
16
+ keras.layers.RandomContrast(0.3),
17
+ ]
18
+ )
19
+
20
+
21
+ @keras.saving.register_keras_serializable()
22
+ def get_cnn_model():
23
+ base_model = keras.applications.efficientnet.EfficientNetB0(
24
+ input_shape=(*IMAGE_SIZE, 3),
25
+ include_top=False,
26
+ weights="imagenet"
27
+ )
28
+ base_model.trainable = False
29
+ base_model_out = base_model.output
30
+ base_model_out = layers.Reshape(
31
+ (-1, base_model_out.shape[-1]))(base_model_out)
32
+ cnn_model = keras.models.Model(base_model.input, base_model_out)
33
+ return cnn_model
34
+
35
+
36
+ @keras.saving.register_keras_serializable()
37
+ class TransformerEncoderBlock(layers.Layer):
38
+ def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
39
+ super().__init__(**kwargs)
40
+ self.embed_dim = embed_dim
41
+ self.dense_dim = dense_dim
42
+ self.num_heads = num_heads
43
+ self.attention_1 = layers.MultiHeadAttention(
44
+ num_heads=num_heads, key_dim=embed_dim, dropout=0.0
45
+ )
46
+ self.layernorm_1 = layers.LayerNormalization()
47
+ self.layernorm_2 = layers.LayerNormalization()
48
+ self.dense_1 = layers.Dense(embed_dim, activation="relu")
49
+
50
+ def get_config(self):
51
+ base_config = super().get_config()
52
+ config = {
53
+ "embed_dim": self.embed_dim,
54
+ "dense_dim": self.dense_dim,
55
+ "num_heads": self.num_heads,
56
+ }
57
+ return {**base_config, **config}
58
+
59
+ def call(self, inputs, training):
60
+ inputs = self.layernorm_1(inputs)
61
+ inputs = self.dense_1(inputs)
62
+
63
+ attention_output_1 = self.attention_1(
64
+ query=inputs,
65
+ value=inputs,
66
+ key=inputs,
67
+ training=training,
68
+ )
69
+ out_1 = self.layernorm_2(inputs + attention_output_1)
70
+ return out_1
71
+
72
+
73
+ @keras.saving.register_keras_serializable()
74
+ class PositionalEmbedding(layers.Layer):
75
+ def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
76
+ super().__init__(**kwargs)
77
+ self.token_embeddings = layers.Embedding(
78
+ input_dim=vocab_size, output_dim=embed_dim, mask_zero=True
79
+ )
80
+ self.position_embeddings = layers.Embedding(
81
+ input_dim=sequence_length, output_dim=embed_dim
82
+ )
83
+ self.sequence_length = sequence_length
84
+ self.vocab_size = vocab_size
85
+ self.embed_dim = embed_dim
86
+
87
+ self.add = layers.Add()
88
+
89
+ def get_config(self):
90
+ base_config = super().get_config()
91
+ config = {
92
+ "sequence_length": self.sequence_length,
93
+ "vocab_size": self.vocab_size,
94
+ "embed_dim": self.embed_dim,
95
+ }
96
+ return {**base_config, **config}
97
+
98
+ def call(self, seq):
99
+ seq = self.token_embeddings(seq)
100
+
101
+ x = tf.range(tf.shape(seq)[1])
102
+ x = x[tf.newaxis, :]
103
+ x = self.position_embeddings(x)
104
+
105
+ return self.add([seq, x])
106
+
107
+
108
+ @keras.saving.register_keras_serializable()
109
+ class TransformerDecoderBlock(layers.Layer):
110
+ def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):
111
+ super().__init__(**kwargs)
112
+ self.embed_dim = embed_dim
113
+ self.ff_dim = ff_dim
114
+ self.num_heads = num_heads
115
+ self.attention_1 = layers.MultiHeadAttention(
116
+ num_heads=num_heads, key_dim=embed_dim, dropout=0.1
117
+ )
118
+ self.attention_2 = layers.MultiHeadAttention(
119
+ num_heads=num_heads, key_dim=embed_dim, dropout=0.1
120
+ )
121
+ self.ffn_layer_1 = layers.Dense(ff_dim, activation="relu")
122
+ self.ffn_layer_2 = layers.Dense(embed_dim)
123
+
124
+ self.layernorm_1 = layers.LayerNormalization()
125
+ self.layernorm_2 = layers.LayerNormalization()
126
+ self.layernorm_3 = layers.LayerNormalization()
127
+
128
+ self.embedding = PositionalEmbedding(
129
+ embed_dim=EMBED_DIM,
130
+ sequence_length=SEQ_LENGTH,
131
+ vocab_size=VOCAB_SIZE,
132
+ )
133
+ self.out = layers.Dense(VOCAB_SIZE, activation="softmax")
134
+
135
+ self.dropout_1 = layers.Dropout(0.3)
136
+ self.dropout_2 = layers.Dropout(0.5)
137
+ self.supports_masking = True
138
+
139
+ def get_config(self):
140
+ base_config = super().get_config()
141
+ config = {
142
+ "embed_dim": self.embed_dim,
143
+ "ff_dim": self.ff_dim,
144
+ "num_heads": self.num_heads,
145
+
146
+ }
147
+ return {**base_config, **config}
148
+
149
+ def call(self, inputs, encoder_outputs, training, mask=None):
150
+ inputs = self.embedding(inputs)
151
+
152
+ attention_output_1 = self.attention_1(
153
+ query=inputs,
154
+ value=inputs,
155
+ key=inputs,
156
+ training=training,
157
+ use_causal_mask=True
158
+ )
159
+ out_1 = self.layernorm_1(inputs + attention_output_1)
160
+
161
+ attention_output_2 = self.attention_2(
162
+ query=out_1,
163
+ value=encoder_outputs,
164
+ key=encoder_outputs,
165
+ training=training,
166
+ )
167
+ out_2 = self.layernorm_2(out_1 + attention_output_2)
168
+
169
+ ffn_out = self.ffn_layer_1(out_2)
170
+ ffn_out = self.dropout_1(ffn_out, training=training)
171
+ ffn_out = self.ffn_layer_2(ffn_out)
172
+
173
+ ffn_out = self.layernorm_3(ffn_out + out_2, training=training)
174
+ ffn_out = self.dropout_2(ffn_out, training=training)
175
+ preds = self.out(ffn_out)
176
+ return preds
177
+
178
+
179
+ @keras.saving.register_keras_serializable()
180
+ class ImageCaptioningModel(keras.Model):
181
+ def __init__(
182
+ self,
183
+ cnn_model,
184
+ encoder,
185
+ decoder,
186
+ image_aug=None,
187
+ **kwargs
188
+ ):
189
+ super().__init__(**kwargs)
190
+ self.cnn_model = cnn_model
191
+ self.encoder = encoder
192
+ self.decoder = decoder
193
+ self.image_aug = image_aug
194
+
195
+ def get_config(self):
196
+ base_config = super().get_config()
197
+ config = {
198
+ "cnn_model": self.cnn_model,
199
+ "encoder": self.encoder,
200
+ "decoder": self.decoder,
201
+ "image_aug": self.image_aug,
202
+ }
203
+ return {**base_config, **config}
204
+
205
+ @classmethod
206
+ def from_config(cls, config):
207
+ # Note that you can also use [`keras.saving.deserialize_keras_object`](/api/models/model_saving_apis/serialization_utils#deserializekerasobject-function) here
208
+ config["cnn_model"] = keras.saving.deserialize_keras_object(
209
+ config["cnn_model"])
210
+ config["encoder"] = keras.saving.deserialize_keras_object(
211
+ config["encoder"])
212
+ config["decoder"] = keras.saving.deserialize_keras_object(
213
+ config["decoder"])
214
+ config["image_aug"] = keras.saving.deserialize_keras_object(
215
+ config["image_aug"])
216
+
217
+ # Instantiate the ImageCaptioningModel with the remaining configuration
218
+ return cls(**config)
219
+
220
+ def call(self, inputs, training):
221
+ img, caption = inputs
222
+ if self.image_aug:
223
+ img = self.image_aug(img)
224
+ img_embed = self.cnn_model(img)
225
+ encoder_out = self.encoder(img_embed, training=training)
226
+ pred = self.decoder(caption, encoder_out, training=training)
227
+ return pred
228
+
229
+ @keras.saving.register_keras_serializable()
230
+ class LRSchedule(keras.optimizers.schedules.LearningRateSchedule):
231
+ def __init__(self, post_warmup_learning_rate, warmup_steps, **kwargs):
232
+ super().__init__(**kwargs)
233
+ self.post_warmup_learning_rate = post_warmup_learning_rate
234
+ self.warmup_steps = warmup_steps
235
+
236
+ def get_config(self):
237
+ config = {
238
+ "post_warmup_learning_rate": self.post_warmup_learning_rate,
239
+ "warmup_steps": self.warmup_steps,
240
+ }
241
+ return config
242
+
243
+ def __call__(self, step):
244
+ global_step = tf.cast(step, tf.float32)
245
+ warmup_steps = tf.cast(self.warmup_steps, tf.float32)
246
+ warmup_progress = global_step / warmup_steps
247
+ warmup_learning_rate = self.post_warmup_learning_rate * warmup_progress
248
+ return tf.cond(
249
+ global_step < warmup_steps,
250
+ lambda: warmup_learning_rate,
251
+ lambda: self.post_warmup_learning_rate,
252
+ )
src/pipeline/__init__.py ADDED
File without changes
src/pipeline/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (203 Bytes). View file
 
src/pipeline/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (219 Bytes). View file
 
src/pipeline/__pycache__/make_dataset.cpython-310.pyc ADDED
Binary file (3.29 kB). View file
 
src/pipeline/__pycache__/predict.cpython-310.pyc ADDED
Binary file (2.49 kB). View file
 
src/pipeline/__pycache__/predict.cpython-311.pyc ADDED
Binary file (4.57 kB). View file
 
src/pipeline/make_dataset.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pathlib
2
+ import keras
3
+ import tensorflow as tf
4
+ import os
5
+ import numpy as np
6
+ import re
7
+
8
+
9
+ IMAGES_PATH = "Flicker8k_Dataset"
10
+ IMAGE_SIZE = (299, 299)
11
+ VOCAB_SIZE = 10000
12
+ SEQ_LENGTH = 25
13
+ BATCH_SIZE = 64
14
+ AUTOTUNE = tf.data.AUTOTUNE
15
+
16
+
17
+ path = pathlib.Path(".")
18
+ keras.utils.get_file(
19
+ origin='https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_Dataset.zip',
20
+ cache_dir='.',
21
+ cache_subdir=path,
22
+ extract=True)
23
+ keras.utils.get_file(
24
+ origin='https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_text.zip',
25
+ cache_dir='.',
26
+ cache_subdir=path,
27
+ extract=True)
28
+
29
+ dataset = pathlib.Path(path, "Flickr8k.token.txt").read_text(
30
+ encoding='utf-8').splitlines()
31
+
32
+ dataset = [line.split('\t') for line in dataset]
33
+
34
+ dataset = [[os.path.join(IMAGES_PATH, fname.split(
35
+ '#')[0].strip()), caption] for (fname, caption) in dataset]
36
+
37
+ caption_mapping = {}
38
+ text_data = []
39
+ X_en_data = []
40
+ X_de_data = []
41
+ Y_data = []
42
+
43
+ for img_name, caption in dataset:
44
+ if img_name.endswith("jpg"):
45
+ X_de_data.append("<start> " + caption.strip().replace(".", ""))
46
+ Y_data.append(caption.strip().replace(".", "") + " <end>")
47
+ text_data.append(
48
+ "<start> " + caption.strip().replace(".", "") + " <end>")
49
+ X_en_data.append(img_name)
50
+
51
+ if img_name in caption_mapping:
52
+ caption_mapping[img_name].append(caption)
53
+ else:
54
+ caption_mapping[img_name] = [caption]
55
+
56
+ train_size = 0.8
57
+ shuffle = True
58
+ np.random.seed(42)
59
+
60
+ zipped = list(zip(X_en_data, X_de_data, Y_data))
61
+ np.random.shuffle(zipped)
62
+ X_en_data, X_de_data, Y_data = zip(*zipped)
63
+
64
+ train_size = int(len(X_en_data)*train_size)
65
+ X_train_en = list(X_en_data[:train_size])
66
+ X_train_de = list(X_de_data[:train_size])
67
+ Y_train = list(Y_data[:train_size])
68
+ X_valid_en = list(X_en_data[train_size:])
69
+ X_valid_de = list(X_de_data[train_size:])
70
+ Y_valid = list(Y_data[train_size:])
71
+
72
+ strip_chars = "!\"#$%&'()*+,-./:;=?@[\]^_`{|}~"
73
+
74
+
75
+ def custom_standardization(input_string):
76
+ lowercase = tf.strings.lower(input_string)
77
+ return tf.strings.regex_replace(lowercase, f'{re.escape(strip_chars)}', '')
78
+
79
+
80
+ vectorization = keras.layers.TextVectorization(
81
+ max_tokens=VOCAB_SIZE,
82
+ output_mode="int",
83
+ output_sequence_length=SEQ_LENGTH,
84
+ standardize=custom_standardization,
85
+ )
86
+
87
+ vectorization.adapt(text_data)
88
+
89
+ vocab = np.array(vectorization.get_vocabulary())
90
+ np.save('./artifacts/vocabulary.npy', vocab)
91
+
92
+
93
+ def decode_and_resize(img_path):
94
+ img = tf.io.read_file(img_path)
95
+ img = tf.image.decode_jpeg(img, channels=3)
96
+ img = tf.image.resize(img, IMAGE_SIZE)
97
+ img = tf.image.convert_image_dtype(img, tf.float32)
98
+ return img
99
+
100
+
101
+ def process_input(img_cap, y_captions):
102
+ img_path, x_captions = img_cap
103
+ return ((decode_and_resize(img_path), vectorization(x_captions)), vectorization(y_captions))
104
+
105
+
106
+ def make_dataset(images, x_captions, y_captions):
107
+ dataset = tf.data.Dataset.from_tensor_slices(
108
+ ((images, x_captions), y_captions))
109
+ dataset = dataset.map(process_input, num_parallel_calls=AUTOTUNE)
110
+ dataset = dataset.batch(BATCH_SIZE).prefetch(AUTOTUNE)
111
+
112
+ return dataset
113
+
114
+
115
+ train_dataset = make_dataset(X_train_en, X_train_de, Y_train)
116
+
117
+ valid_dataset = make_dataset(X_valid_en, X_valid_de, Y_valid)
src/pipeline/predict.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import keras
2
+ import numpy as np
3
+ import tensorflow as tf
4
+ import re
5
+ from src.components.model import get_cnn_model, TransformerEncoderBlock, TransformerDecoderBlock, ImageCaptioningModel, image_augmentation, LRSchedule
6
+
7
+ SEQ_LENGTH = 25
8
+ VOCAB_SIZE = 10000
9
+ IMAGE_SIZE = (299, 299)
10
+
11
+ print("loading_model...")
12
+ loaded_model = keras.saving.load_model(
13
+ "./artifacts/caption_model.keras", compile=True)
14
+ print("model loaded...")
15
+
16
+ vocab = np.load("./artifacts/vocabulary.npy")
17
+ print("vocab loaded...")
18
+ data_txt = np.load("./artifacts/data_txt.npy").tolist()
19
+ print("vectorization data loaded...")
20
+
21
+ index_lookup = dict(zip(range(len(vocab)), vocab))
22
+ print("index lookup loaded...")
23
+ max_decoded_sentence_length = SEQ_LENGTH - 1
24
+ strip_chars = "!\"#$%&'()*+,-./:;=?@[\]^_`{|}~"
25
+
26
+
27
+ def custom_standardization(input_string):
28
+ lowercase = tf.strings.lower(input_string)
29
+ return tf.strings.regex_replace(lowercase, f'{re.escape(strip_chars)}', '')
30
+
31
+
32
+ vectorization = keras.layers.TextVectorization(
33
+ max_tokens=VOCAB_SIZE,
34
+ output_mode="int",
35
+ output_sequence_length=SEQ_LENGTH,
36
+ standardize=custom_standardization,
37
+ )
38
+
39
+ vectorization.adapt(data_txt)
40
+ print("vectorization adapted...")
41
+
42
+
43
+ def decode_and_resize(image):
44
+ if isinstance(image, str):
45
+ img = tf.io.read_file(image)
46
+ img = tf.image.decode_jpeg(img, channels=3)
47
+ elif isinstance(image, np.ndarray):
48
+ img = tf.constant(image)
49
+ img = tf.image.resize(img, IMAGE_SIZE)
50
+ img = tf.image.convert_image_dtype(img, tf.float32)
51
+ return img
52
+
53
+
54
+ def generate_caption(image):
55
+
56
+ sample_img = decode_and_resize(image)
57
+
58
+ # Pass the image to the CNN
59
+ img = tf.expand_dims(sample_img, 0)
60
+ img = loaded_model.cnn_model(img)
61
+
62
+ # Pass the image features to the Transformer encoder
63
+ encoded_img = loaded_model.encoder(img, training=False)
64
+
65
+ # Generate the caption using the Transformer decoder
66
+ decoded_caption = "<start> "
67
+ for i in range(max_decoded_sentence_length):
68
+ tokenized_caption = vectorization([decoded_caption])
69
+ mask = tf.math.not_equal(tokenized_caption, 0)
70
+ predictions = loaded_model.decoder(
71
+ tokenized_caption, encoded_img, training=False, mask=mask
72
+ )
73
+ sampled_token_index = np.argmax(predictions[0, i, :])
74
+ sampled_token = index_lookup[sampled_token_index]
75
+ if sampled_token == "<end>":
76
+ break
77
+ decoded_caption += " " + sampled_token
78
+
79
+ decoded_caption = decoded_caption.replace("<start> ", "")
80
+ decoded_caption = decoded_caption.replace(" <end>", "").strip()
81
+ return decoded_caption
src/pipeline/training.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import keras
2
+ import tensorflow as tf
3
+ from make_dataset import train_dataset, valid_dataset
4
+ from src.components.model import get_cnn_model, TransformerEncoderBlock, TransformerDecoderBlock, ImageCaptioningModel, image_augmentation, LRSchedule
5
+
6
+
7
+ EMBED_DIM = 512
8
+ FF_DIM = 512
9
+ EPOCHS = 30
10
+
11
+ cnn_model = get_cnn_model()
12
+ encoder = TransformerEncoderBlock(
13
+ embed_dim=EMBED_DIM, dense_dim=FF_DIM, num_heads=1)
14
+ decoder = TransformerDecoderBlock(
15
+ embed_dim=EMBED_DIM, ff_dim=FF_DIM, num_heads=2)
16
+ caption_model = ImageCaptioningModel(
17
+ cnn_model=cnn_model,
18
+ encoder=encoder,
19
+ decoder=decoder,
20
+ image_aug=image_augmentation,
21
+ )
22
+
23
+
24
+ early_stopping = keras.callbacks.EarlyStopping(
25
+ patience=3, restore_best_weights=True)
26
+
27
+
28
+
29
+
30
+ num_train_steps = len(train_dataset) * EPOCHS
31
+ num_warmup_steps = num_train_steps // 15
32
+ lr_schedule = LRSchedule(post_warmup_learning_rate=1e-4,
33
+ warmup_steps=num_warmup_steps)
34
+
35
+ caption_model.compile(optimizer=keras.optimizers.Adam(lr_schedule), loss='sparse_categorical_crossentropy',
36
+ metrics=['accuracy'])
37
+
38
+ caption_model.fit(
39
+ train_dataset,
40
+ epochs=EPOCHS,
41
+ validation_data=valid_dataset,
42
+ callbacks=[early_stopping],
43
+ )
44
+
45
+ caption_model.save("./artifacts/caption_model1.keras")