Spaces:
Sleeping
Sleeping
Upload 22 files
Browse files- .gitattributes +1 -0
- app.py +8 -0
- artifacts/caption_model.keras +3 -0
- artifacts/data_txt.npy +3 -0
- artifacts/vocabulary.npy +3 -0
- notebooks/Image_captioning.ipynb +972 -0
- requirements.txt +5 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-310.pyc +0 -0
- src/__pycache__/__init__.cpython-311.pyc +0 -0
- src/components/__init__.py +0 -0
- src/components/__pycache__/__init__.cpython-310.pyc +0 -0
- src/components/__pycache__/model.cpython-310.pyc +0 -0
- src/components/model.py +252 -0
- src/pipeline/__init__.py +0 -0
- src/pipeline/__pycache__/__init__.cpython-310.pyc +0 -0
- src/pipeline/__pycache__/__init__.cpython-311.pyc +0 -0
- src/pipeline/__pycache__/make_dataset.cpython-310.pyc +0 -0
- src/pipeline/__pycache__/predict.cpython-310.pyc +0 -0
- src/pipeline/__pycache__/predict.cpython-311.pyc +0 -0
- src/pipeline/make_dataset.py +117 -0
- src/pipeline/predict.py +81 -0
- src/pipeline/training.py +45 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
artifacts/caption_model.keras filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from src.pipeline.predict import generate_caption
|
| 3 |
+
|
| 4 |
+
demo = gr.Interface(fn=generate_caption,
|
| 5 |
+
inputs=gr.Image(),
|
| 6 |
+
outputs=[gr.Textbox(label="Generated Caption", lines=3)],
|
| 7 |
+
)
|
| 8 |
+
demo.launch()
|
artifacts/caption_model.keras
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3015c7f04bee25a4c070cb043a9d7ed8edf5d3817d0299576ffed442cb1a750f
|
| 3 |
+
size 217502431
|
artifacts/data_txt.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:349189a957c5c9d7ac2d46365981b556ce6d02b3facaf3a95c8249edc2d4be7a
|
| 3 |
+
size 34305968
|
artifacts/vocabulary.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25aee45770b60296f52c86aa049bf471cf284389972310dc6880bd9caf690e1f
|
| 3 |
+
size 784736
|
notebooks/Image_captioning.ipynb
ADDED
|
@@ -0,0 +1,972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"colab": {
|
| 8 |
+
"base_uri": "https://localhost:8080/",
|
| 9 |
+
"height": 1000
|
| 10 |
+
},
|
| 11 |
+
"id": "nUu3FjibHfQL",
|
| 12 |
+
"outputId": "8f9e98eb-f627-49f9-dcae-47dfdde9cb1c"
|
| 13 |
+
},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"!pip install keras==2.15.0 tensorflow==2.15.0"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
+
"metadata": {
|
| 23 |
+
"id": "3dlzV23EMp8e"
|
| 24 |
+
},
|
| 25 |
+
"outputs": [],
|
| 26 |
+
"source": [
|
| 27 |
+
"import os\n",
|
| 28 |
+
"os.environ['KERAS_BACKEND'] = 'tensorflow'\n",
|
| 29 |
+
"import pathlib\n",
|
| 30 |
+
"import re"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": null,
|
| 36 |
+
"metadata": {
|
| 37 |
+
"id": "vo6h7I0NNR2G"
|
| 38 |
+
},
|
| 39 |
+
"outputs": [],
|
| 40 |
+
"source": [
|
| 41 |
+
"import tensorflow as tf\n",
|
| 42 |
+
"import keras\n",
|
| 43 |
+
"import numpy as np\n",
|
| 44 |
+
"from keras import layers"
|
| 45 |
+
]
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"cell_type": "code",
|
| 49 |
+
"execution_count": null,
|
| 50 |
+
"metadata": {
|
| 51 |
+
"colab": {
|
| 52 |
+
"base_uri": "https://localhost:8080/"
|
| 53 |
+
},
|
| 54 |
+
"id": "FXa1ANO0NdPB",
|
| 55 |
+
"outputId": "df1c87dd-c04f-469d-ec04-4b81e2c7917e"
|
| 56 |
+
},
|
| 57 |
+
"outputs": [
|
| 58 |
+
{
|
| 59 |
+
"name": "stdout",
|
| 60 |
+
"output_type": "stream",
|
| 61 |
+
"text": [
|
| 62 |
+
"2.15.0\n",
|
| 63 |
+
"2.15.0\n",
|
| 64 |
+
"tensorflow\n"
|
| 65 |
+
]
|
| 66 |
+
}
|
| 67 |
+
],
|
| 68 |
+
"source": [
|
| 69 |
+
"print(keras.__version__)\n",
|
| 70 |
+
"print(tf.__version__)\n",
|
| 71 |
+
"print(keras.backend.backend())"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"execution_count": null,
|
| 77 |
+
"metadata": {
|
| 78 |
+
"id": "iGRrFrjo-VQL"
|
| 79 |
+
},
|
| 80 |
+
"outputs": [],
|
| 81 |
+
"source": [
|
| 82 |
+
"# Path to the images\n",
|
| 83 |
+
"IMAGES_PATH = \"Flicker8k_Dataset\"\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"# Desired image dimensions\n",
|
| 86 |
+
"IMAGE_SIZE = (299, 299)\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"# Vocabulary size\n",
|
| 89 |
+
"VOCAB_SIZE = 10000\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"# Fixed length allowed for any sequence\n",
|
| 92 |
+
"SEQ_LENGTH = 25\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"# Dimension for the image embeddings and token embeddings\n",
|
| 95 |
+
"EMBED_DIM = 512\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"# Per-layer units in the feed-forward network\n",
|
| 98 |
+
"FF_DIM = 512\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"# Other training parameters\n",
|
| 101 |
+
"BATCH_SIZE = 64\n",
|
| 102 |
+
"EPOCHS = 30\n",
|
| 103 |
+
"AUTOTUNE = tf.data.AUTOTUNE"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": null,
|
| 109 |
+
"metadata": {
|
| 110 |
+
"colab": {
|
| 111 |
+
"base_uri": "https://localhost:8080/",
|
| 112 |
+
"height": 36
|
| 113 |
+
},
|
| 114 |
+
"id": "Yiy02CsNO12W",
|
| 115 |
+
"outputId": "0f8b9a5e-c590-4b12-ec51-82741fadf4d9"
|
| 116 |
+
},
|
| 117 |
+
"outputs": [],
|
| 118 |
+
"source": [
|
| 119 |
+
"path = pathlib.Path(\".\")\n",
|
| 120 |
+
"keras.utils.get_file(\n",
|
| 121 |
+
" origin='https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_Dataset.zip',\n",
|
| 122 |
+
" cache_dir='.',\n",
|
| 123 |
+
" cache_subdir=path,\n",
|
| 124 |
+
" extract=True)\n",
|
| 125 |
+
"keras.utils.get_file(\n",
|
| 126 |
+
" origin='https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_text.zip',\n",
|
| 127 |
+
" cache_dir='.',\n",
|
| 128 |
+
" cache_subdir=path,\n",
|
| 129 |
+
" extract=True)"
|
| 130 |
+
]
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"cell_type": "code",
|
| 134 |
+
"execution_count": null,
|
| 135 |
+
"metadata": {
|
| 136 |
+
"id": "8ChgFWRLUzhJ"
|
| 137 |
+
},
|
| 138 |
+
"outputs": [],
|
| 139 |
+
"source": [
|
| 140 |
+
"dataset = pathlib.Path(path, \"Flickr8k.token.txt\").read_text(encoding='utf-8').splitlines()"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": null,
|
| 146 |
+
"metadata": {
|
| 147 |
+
"colab": {
|
| 148 |
+
"base_uri": "https://localhost:8080/"
|
| 149 |
+
},
|
| 150 |
+
"id": "Tp4TSNVZBlEt",
|
| 151 |
+
"outputId": "42113a83-cc68-4ed3-a630-8aba8a2b20d6"
|
| 152 |
+
},
|
| 153 |
+
"outputs": [],
|
| 154 |
+
"source": [
|
| 155 |
+
"dataset"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"metadata": {
|
| 162 |
+
"id": "qYtr55VMWTTy"
|
| 163 |
+
},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"dataset = [line.split('\\t') for line in dataset]"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": null,
|
| 172 |
+
"metadata": {
|
| 173 |
+
"colab": {
|
| 174 |
+
"base_uri": "https://localhost:8080/"
|
| 175 |
+
},
|
| 176 |
+
"id": "9y18xIyfBovq",
|
| 177 |
+
"outputId": "7896d304-5864-46d8-8b63-945dfebd3151"
|
| 178 |
+
},
|
| 179 |
+
"outputs": [],
|
| 180 |
+
"source": [
|
| 181 |
+
"dataset"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": null,
|
| 187 |
+
"metadata": {
|
| 188 |
+
"id": "aMQbS8ueZzii"
|
| 189 |
+
},
|
| 190 |
+
"outputs": [],
|
| 191 |
+
"source": [
|
| 192 |
+
"dataset = [[os.path.join(IMAGES_PATH,fname.split('#')[0].strip()), caption] for (fname, caption) in dataset]"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "code",
|
| 197 |
+
"execution_count": null,
|
| 198 |
+
"metadata": {
|
| 199 |
+
"colab": {
|
| 200 |
+
"base_uri": "https://localhost:8080/"
|
| 201 |
+
},
|
| 202 |
+
"id": "l7w7CxPuZtMG",
|
| 203 |
+
"outputId": "e3ca1665-277b-4c81-88d3-5c2c39ccd628"
|
| 204 |
+
},
|
| 205 |
+
"outputs": [],
|
| 206 |
+
"source": [
|
| 207 |
+
"dataset"
|
| 208 |
+
]
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"cell_type": "code",
|
| 212 |
+
"execution_count": null,
|
| 213 |
+
"metadata": {
|
| 214 |
+
"colab": {
|
| 215 |
+
"base_uri": "https://localhost:8080/"
|
| 216 |
+
},
|
| 217 |
+
"id": "mkMvwXnZBFzD",
|
| 218 |
+
"outputId": "774cd7f3-0ffc-4273-862d-feb4366c3e20"
|
| 219 |
+
},
|
| 220 |
+
"outputs": [],
|
| 221 |
+
"source": [
|
| 222 |
+
"for i in dataset:\n",
|
| 223 |
+
" print(i)\n",
|
| 224 |
+
" break"
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"execution_count": null,
|
| 230 |
+
"metadata": {
|
| 231 |
+
"id": "kqthDk6gZV3i"
|
| 232 |
+
},
|
| 233 |
+
"outputs": [],
|
| 234 |
+
"source": [
|
| 235 |
+
"caption_mapping = {}\n",
|
| 236 |
+
"text_data = []\n",
|
| 237 |
+
"X_en_data = []\n",
|
| 238 |
+
"X_de_data = []\n",
|
| 239 |
+
"Y_data = []"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": null,
|
| 245 |
+
"metadata": {
|
| 246 |
+
"id": "yWbcI72w9Xv2"
|
| 247 |
+
},
|
| 248 |
+
"outputs": [],
|
| 249 |
+
"source": [
|
| 250 |
+
"for img_name, caption in dataset:\n",
|
| 251 |
+
" if img_name.endswith(\"jpg\"):\n",
|
| 252 |
+
" X_de_data.append(\"<start> \" + caption.strip().replace(\".\", \"\"))\n",
|
| 253 |
+
" Y_data.append(caption.strip().replace(\".\", \"\") + \" <end>\")\n",
|
| 254 |
+
" text_data.append(\"<start> \" + caption.strip().replace(\".\", \"\") + \" <end>\")\n",
|
| 255 |
+
" X_en_data.append(img_name)\n",
|
| 256 |
+
"\n",
|
| 257 |
+
"\n",
|
| 258 |
+
" if img_name in caption_mapping:\n",
|
| 259 |
+
" caption_mapping[img_name].append(caption)\n",
|
| 260 |
+
" else:\n",
|
| 261 |
+
" caption_mapping[img_name] = [caption]"
|
| 262 |
+
]
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"cell_type": "code",
|
| 266 |
+
"execution_count": null,
|
| 267 |
+
"metadata": {
|
| 268 |
+
"id": "aqLKJwdVSydw"
|
| 269 |
+
},
|
| 270 |
+
"outputs": [],
|
| 271 |
+
"source": [
|
| 272 |
+
"for i in X_de_data:\n",
|
| 273 |
+
" if len(i) <= 2:\n",
|
| 274 |
+
" print(\"Y\")"
|
| 275 |
+
]
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"cell_type": "code",
|
| 279 |
+
"execution_count": null,
|
| 280 |
+
"metadata": {
|
| 281 |
+
"colab": {
|
| 282 |
+
"base_uri": "https://localhost:8080/"
|
| 283 |
+
},
|
| 284 |
+
"id": "6RDJi5j4_C_z",
|
| 285 |
+
"outputId": "a6b9a4e5-94a3-40cc-98e6-8454e4e268ab"
|
| 286 |
+
},
|
| 287 |
+
"outputs": [],
|
| 288 |
+
"source": [
|
| 289 |
+
"print(X_en_data[0])\n",
|
| 290 |
+
"print(X_de_data[0])\n",
|
| 291 |
+
"print(Y_data[0])"
|
| 292 |
+
]
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"cell_type": "code",
|
| 296 |
+
"execution_count": null,
|
| 297 |
+
"metadata": {
|
| 298 |
+
"id": "L_l0R04eJZnQ"
|
| 299 |
+
},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"train_size=0.8\n",
|
| 303 |
+
"shuffle=True\n",
|
| 304 |
+
"np.random.seed(42)"
|
| 305 |
+
]
|
| 306 |
+
},
|
| 307 |
+
{
|
| 308 |
+
"cell_type": "code",
|
| 309 |
+
"execution_count": null,
|
| 310 |
+
"metadata": {
|
| 311 |
+
"colab": {
|
| 312 |
+
"base_uri": "https://localhost:8080/"
|
| 313 |
+
},
|
| 314 |
+
"id": "f-EnvEgh8sOB",
|
| 315 |
+
"outputId": "0cc36fe3-6cac-48ea-bcd4-9ace27dd5325"
|
| 316 |
+
},
|
| 317 |
+
"outputs": [],
|
| 318 |
+
"source": [
|
| 319 |
+
"zipped = list(zip(X_en_data, X_de_data, Y_data))\n",
|
| 320 |
+
"np.random.shuffle(zipped)\n",
|
| 321 |
+
"X_en_data, X_de_data, Y_data = zip(*zipped)\n",
|
| 322 |
+
"print(X_en_data[0])\n",
|
| 323 |
+
"print(X_de_data[0])\n",
|
| 324 |
+
"print(Y_data[0])"
|
| 325 |
+
]
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"cell_type": "code",
|
| 329 |
+
"execution_count": null,
|
| 330 |
+
"metadata": {
|
| 331 |
+
"id": "Z7EFBHhdPeLs"
|
| 332 |
+
},
|
| 333 |
+
"outputs": [],
|
| 334 |
+
"source": [
|
| 335 |
+
"train_size = int(len(X_en_data)*train_size)\n",
|
| 336 |
+
"X_train_en = list(X_en_data[:train_size])\n",
|
| 337 |
+
"X_train_de = list(X_de_data[:train_size])\n",
|
| 338 |
+
"Y_train = list(Y_data[:train_size])\n",
|
| 339 |
+
"X_valid_en = list(X_en_data[train_size:])\n",
|
| 340 |
+
"X_valid_de = list(X_de_data[train_size:])\n",
|
| 341 |
+
"Y_valid = list(Y_data[train_size:])"
|
| 342 |
+
]
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"cell_type": "code",
|
| 346 |
+
"execution_count": null,
|
| 347 |
+
"metadata": {
|
| 348 |
+
"colab": {
|
| 349 |
+
"base_uri": "https://localhost:8080/"
|
| 350 |
+
},
|
| 351 |
+
"id": "VEACJzQ0Tccm",
|
| 352 |
+
"outputId": "0c534618-1218-49df-ec73-54bdaf6c0452"
|
| 353 |
+
},
|
| 354 |
+
"outputs": [],
|
| 355 |
+
"source": [
|
| 356 |
+
"print(X_train_en[0])\n",
|
| 357 |
+
"print(X_train_de[0])\n",
|
| 358 |
+
"print(Y_train[0])\n",
|
| 359 |
+
"print(X_valid_en[0])\n",
|
| 360 |
+
"print(X_valid_de[0])\n",
|
| 361 |
+
"print(Y_valid[0])"
|
| 362 |
+
]
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"cell_type": "code",
|
| 366 |
+
"execution_count": null,
|
| 367 |
+
"metadata": {
|
| 368 |
+
"id": "tZAf67OXAmxn"
|
| 369 |
+
},
|
| 370 |
+
"outputs": [],
|
| 371 |
+
"source": [
|
| 372 |
+
"strip_chars = \"!\\\"#$%&'()*+,-./:;=?@[\\]^_`{|}~\"\n",
|
| 373 |
+
"def custom_standardization(input_string):\n",
|
| 374 |
+
" lowercase = tf.strings.lower(input_string)\n",
|
| 375 |
+
" return tf.strings.regex_replace(lowercase, f'{re.escape(strip_chars)}', '')"
|
| 376 |
+
]
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"cell_type": "code",
|
| 380 |
+
"execution_count": null,
|
| 381 |
+
"metadata": {
|
| 382 |
+
"id": "d6v0_3TuJZaG"
|
| 383 |
+
},
|
| 384 |
+
"outputs": [],
|
| 385 |
+
"source": [
|
| 386 |
+
"vectorization = keras.layers.TextVectorization(\n",
|
| 387 |
+
" max_tokens=VOCAB_SIZE,\n",
|
| 388 |
+
" output_mode=\"int\",\n",
|
| 389 |
+
" output_sequence_length=SEQ_LENGTH,\n",
|
| 390 |
+
" standardize=custom_standardization,\n",
|
| 391 |
+
" )\n",
|
| 392 |
+
"\n",
|
| 393 |
+
"vectorization.adapt(text_data)\n",
|
| 394 |
+
"vocab = np.array(vectorization.get_vocabulary())\n",
|
| 395 |
+
"np.save('./artifacts/vocabulary.npy', vocab)"
|
| 396 |
+
]
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"cell_type": "code",
|
| 400 |
+
"execution_count": null,
|
| 401 |
+
"metadata": {
|
| 402 |
+
"id": "WcXsq2LzNpda"
|
| 403 |
+
},
|
| 404 |
+
"outputs": [],
|
| 405 |
+
"source": [
|
| 406 |
+
"def decode_and_resize(img_path):\n",
|
| 407 |
+
" img = tf.io.read_file(img_path)\n",
|
| 408 |
+
" img = tf.image.decode_jpeg(img, channels=3)\n",
|
| 409 |
+
" img = tf.image.resize(img, IMAGE_SIZE)\n",
|
| 410 |
+
" img = tf.image.convert_image_dtype(img, tf.float32)\n",
|
| 411 |
+
" return img\n",
|
| 412 |
+
"\n",
|
| 413 |
+
"\n",
|
| 414 |
+
"def process_input(img_cap, y_captions):\n",
|
| 415 |
+
" img_path, x_captions = img_cap\n",
|
| 416 |
+
" return ((decode_and_resize(img_path), vectorization(x_captions)), vectorization(y_captions))\n",
|
| 417 |
+
"\n",
|
| 418 |
+
"\n",
|
| 419 |
+
"def make_dataset(images, x_captions, y_captions):\n",
|
| 420 |
+
" dataset = tf.data.Dataset.from_tensor_slices(((images, x_captions), y_captions))\n",
|
| 421 |
+
" dataset = dataset.map(process_input, num_parallel_calls=AUTOTUNE)\n",
|
| 422 |
+
" dataset = dataset.batch(BATCH_SIZE).prefetch(AUTOTUNE)\n",
|
| 423 |
+
"\n",
|
| 424 |
+
" return dataset\n",
|
| 425 |
+
"\n",
|
| 426 |
+
"\n",
|
| 427 |
+
"\n",
|
| 428 |
+
"train_dataset = make_dataset(X_train_en, X_train_de, Y_train)\n",
|
| 429 |
+
"\n",
|
| 430 |
+
"valid_dataset = make_dataset(X_valid_en, X_valid_de, Y_valid)\n"
|
| 431 |
+
]
|
| 432 |
+
},
|
| 433 |
+
{
|
| 434 |
+
"cell_type": "code",
|
| 435 |
+
"execution_count": null,
|
| 436 |
+
"metadata": {
|
| 437 |
+
"id": "CC_icKqG5xGg"
|
| 438 |
+
},
|
| 439 |
+
"outputs": [],
|
| 440 |
+
"source": [
|
| 441 |
+
"image_augmentation = keras.Sequential(\n",
|
| 442 |
+
" [\n",
|
| 443 |
+
" keras.layers.RandomFlip(\"horizontal\"),\n",
|
| 444 |
+
" keras.layers.RandomRotation(0.2),\n",
|
| 445 |
+
" keras.layers.RandomContrast(0.3),\n",
|
| 446 |
+
" ]\n",
|
| 447 |
+
")\n",
|
| 448 |
+
"@keras.saving.register_keras_serializable()\n",
|
| 449 |
+
"def get_cnn_model():\n",
|
| 450 |
+
" base_model = keras.applications.efficientnet.EfficientNetB0(\n",
|
| 451 |
+
" input_shape=(*IMAGE_SIZE, 3),\n",
|
| 452 |
+
" include_top=False,\n",
|
| 453 |
+
" weights=\"imagenet\"\n",
|
| 454 |
+
" )\n",
|
| 455 |
+
" base_model.trainable = False\n",
|
| 456 |
+
" base_model_out = base_model.output\n",
|
| 457 |
+
" base_model_out = layers.Reshape((-1, base_model_out.shape[-1]))(base_model_out)\n",
|
| 458 |
+
" cnn_model = keras.models.Model(base_model.input, base_model_out)\n",
|
| 459 |
+
" return cnn_model\n",
|
| 460 |
+
"\n",
|
| 461 |
+
"@keras.saving.register_keras_serializable()\n",
|
| 462 |
+
"class TransformerEncoderBlock(layers.Layer):\n",
|
| 463 |
+
" def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):\n",
|
| 464 |
+
" super().__init__(**kwargs)\n",
|
| 465 |
+
" self.embed_dim = embed_dim\n",
|
| 466 |
+
" self.dense_dim = dense_dim\n",
|
| 467 |
+
" self.num_heads = num_heads\n",
|
| 468 |
+
" self.attention_1 = layers.MultiHeadAttention(\n",
|
| 469 |
+
" num_heads=num_heads, key_dim=embed_dim, dropout=0.0\n",
|
| 470 |
+
" )\n",
|
| 471 |
+
" self.layernorm_1 = layers.LayerNormalization()\n",
|
| 472 |
+
" self.layernorm_2 = layers.LayerNormalization()\n",
|
| 473 |
+
" self.dense_1 = layers.Dense(embed_dim, activation=\"relu\")\n",
|
| 474 |
+
"\n",
|
| 475 |
+
" def get_config(self):\n",
|
| 476 |
+
" base_config = super().get_config()\n",
|
| 477 |
+
" config = {\n",
|
| 478 |
+
" \"embed_dim\": self.embed_dim,\n",
|
| 479 |
+
" \"dense_dim\": self.dense_dim,\n",
|
| 480 |
+
" \"num_heads\": self.num_heads,\n",
|
| 481 |
+
" }\n",
|
| 482 |
+
" return {**base_config, **config}\n",
|
| 483 |
+
"\n",
|
| 484 |
+
"\n",
|
| 485 |
+
" def call(self, inputs, training):\n",
|
| 486 |
+
" inputs = self.layernorm_1(inputs)\n",
|
| 487 |
+
" inputs = self.dense_1(inputs)\n",
|
| 488 |
+
"\n",
|
| 489 |
+
" attention_output_1 = self.attention_1(\n",
|
| 490 |
+
" query=inputs,\n",
|
| 491 |
+
" value=inputs,\n",
|
| 492 |
+
" key=inputs,\n",
|
| 493 |
+
" training=training,\n",
|
| 494 |
+
" )\n",
|
| 495 |
+
" out_1 = self.layernorm_2(inputs + attention_output_1)\n",
|
| 496 |
+
" return out_1\n",
|
| 497 |
+
"\n",
|
| 498 |
+
"@keras.saving.register_keras_serializable()\n",
|
| 499 |
+
"class PositionalEmbedding(layers.Layer):\n",
|
| 500 |
+
" def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):\n",
|
| 501 |
+
" super().__init__(**kwargs)\n",
|
| 502 |
+
" self.token_embeddings = layers.Embedding(\n",
|
| 503 |
+
" input_dim=vocab_size, output_dim=embed_dim, mask_zero=True\n",
|
| 504 |
+
" )\n",
|
| 505 |
+
" self.position_embeddings = layers.Embedding(\n",
|
| 506 |
+
" input_dim=sequence_length, output_dim=embed_dim\n",
|
| 507 |
+
" )\n",
|
| 508 |
+
" self.sequence_length = sequence_length\n",
|
| 509 |
+
" self.vocab_size = vocab_size\n",
|
| 510 |
+
" self.embed_dim = embed_dim\n",
|
| 511 |
+
"\n",
|
| 512 |
+
" self.add = layers.Add()\n",
|
| 513 |
+
"\n",
|
| 514 |
+
" def get_config(self):\n",
|
| 515 |
+
" base_config = super().get_config()\n",
|
| 516 |
+
" config = {\n",
|
| 517 |
+
" \"sequence_length\": self.sequence_length,\n",
|
| 518 |
+
" \"vocab_size\": self.vocab_size,\n",
|
| 519 |
+
" \"embed_dim\": self.embed_dim,\n",
|
| 520 |
+
" }\n",
|
| 521 |
+
" return {**base_config, **config}\n",
|
| 522 |
+
"\n",
|
| 523 |
+
" def call(self, seq):\n",
|
| 524 |
+
" seq = self.token_embeddings(seq)\n",
|
| 525 |
+
"\n",
|
| 526 |
+
" x = tf.range(tf.shape(seq)[1])\n",
|
| 527 |
+
" x = x[tf.newaxis, :]\n",
|
| 528 |
+
" x = self.position_embeddings(x)\n",
|
| 529 |
+
"\n",
|
| 530 |
+
" return self.add([seq,x])\n",
|
| 531 |
+
"\n",
|
| 532 |
+
"@keras.saving.register_keras_serializable()\n",
|
| 533 |
+
"class TransformerDecoderBlock(layers.Layer):\n",
|
| 534 |
+
" def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):\n",
|
| 535 |
+
" super().__init__(**kwargs)\n",
|
| 536 |
+
" self.embed_dim = embed_dim\n",
|
| 537 |
+
" self.ff_dim = ff_dim\n",
|
| 538 |
+
" self.num_heads = num_heads\n",
|
| 539 |
+
" self.attention_1 = layers.MultiHeadAttention(\n",
|
| 540 |
+
" num_heads=num_heads, key_dim=embed_dim, dropout=0.1\n",
|
| 541 |
+
" )\n",
|
| 542 |
+
" self.attention_2 = layers.MultiHeadAttention(\n",
|
| 543 |
+
" num_heads=num_heads, key_dim=embed_dim, dropout=0.1\n",
|
| 544 |
+
" )\n",
|
| 545 |
+
" self.ffn_layer_1 = layers.Dense(ff_dim, activation=\"relu\")\n",
|
| 546 |
+
" self.ffn_layer_2 = layers.Dense(embed_dim)\n",
|
| 547 |
+
"\n",
|
| 548 |
+
" self.layernorm_1 = layers.LayerNormalization()\n",
|
| 549 |
+
" self.layernorm_2 = layers.LayerNormalization()\n",
|
| 550 |
+
" self.layernorm_3 = layers.LayerNormalization()\n",
|
| 551 |
+
"\n",
|
| 552 |
+
" self.embedding = PositionalEmbedding(\n",
|
| 553 |
+
" embed_dim=EMBED_DIM,\n",
|
| 554 |
+
" sequence_length=SEQ_LENGTH,\n",
|
| 555 |
+
" vocab_size=VOCAB_SIZE,\n",
|
| 556 |
+
" )\n",
|
| 557 |
+
" self.out = layers.Dense(VOCAB_SIZE, activation=\"softmax\")\n",
|
| 558 |
+
"\n",
|
| 559 |
+
" self.dropout_1 = layers.Dropout(0.3)\n",
|
| 560 |
+
" self.dropout_2 = layers.Dropout(0.5)\n",
|
| 561 |
+
" self.supports_masking = True\n",
|
| 562 |
+
"\n",
|
| 563 |
+
" def get_config(self):\n",
|
| 564 |
+
" base_config = super().get_config()\n",
|
| 565 |
+
" config = {\n",
|
| 566 |
+
" \"embed_dim\": self.embed_dim,\n",
|
| 567 |
+
" \"ff_dim\": self.ff_dim,\n",
|
| 568 |
+
" \"num_heads\": self.num_heads,\n",
|
| 569 |
+
"\n",
|
| 570 |
+
" }\n",
|
| 571 |
+
" return {**base_config, **config}\n",
|
| 572 |
+
"\n",
|
| 573 |
+
"\n",
|
| 574 |
+
"\n",
|
| 575 |
+
" def call(self, inputs, encoder_outputs, training, mask=None):\n",
|
| 576 |
+
" inputs = self.embedding(inputs)\n",
|
| 577 |
+
"\n",
|
| 578 |
+
" attention_output_1 = self.attention_1(\n",
|
| 579 |
+
" query=inputs,\n",
|
| 580 |
+
" value=inputs,\n",
|
| 581 |
+
" key=inputs,\n",
|
| 582 |
+
" training=training,\n",
|
| 583 |
+
" use_causal_mask=True\n",
|
| 584 |
+
" )\n",
|
| 585 |
+
" out_1 = self.layernorm_1(inputs + attention_output_1)\n",
|
| 586 |
+
"\n",
|
| 587 |
+
" attention_output_2 = self.attention_2(\n",
|
| 588 |
+
" query=out_1,\n",
|
| 589 |
+
" value=encoder_outputs,\n",
|
| 590 |
+
" key=encoder_outputs,\n",
|
| 591 |
+
" training=training,\n",
|
| 592 |
+
" )\n",
|
| 593 |
+
" out_2 = self.layernorm_2(out_1 + attention_output_2)\n",
|
| 594 |
+
"\n",
|
| 595 |
+
" ffn_out = self.ffn_layer_1(out_2)\n",
|
| 596 |
+
" ffn_out = self.dropout_1(ffn_out, training=training)\n",
|
| 597 |
+
" ffn_out = self.ffn_layer_2(ffn_out)\n",
|
| 598 |
+
"\n",
|
| 599 |
+
" ffn_out = self.layernorm_3(ffn_out + out_2, training=training)\n",
|
| 600 |
+
" ffn_out = self.dropout_2(ffn_out, training=training)\n",
|
| 601 |
+
" preds = self.out(ffn_out)\n",
|
| 602 |
+
" return preds\n",
|
| 603 |
+
"\n",
|
| 604 |
+
"\n",
|
| 605 |
+
"@keras.saving.register_keras_serializable()\n",
|
| 606 |
+
"class ImageCaptioningModel(keras.Model):\n",
|
| 607 |
+
" def __init__(\n",
|
| 608 |
+
" self,\n",
|
| 609 |
+
" cnn_model,\n",
|
| 610 |
+
" encoder,\n",
|
| 611 |
+
" decoder,\n",
|
| 612 |
+
" image_aug=None,\n",
|
| 613 |
+
" **kwargs\n",
|
| 614 |
+
" ):\n",
|
| 615 |
+
" super().__init__(**kwargs)\n",
|
| 616 |
+
" self.cnn_model = cnn_model\n",
|
| 617 |
+
" self.encoder = encoder\n",
|
| 618 |
+
" self.decoder = decoder\n",
|
| 619 |
+
" self.image_aug = image_aug\n",
|
| 620 |
+
"\n",
|
| 621 |
+
" def get_config(self):\n",
|
| 622 |
+
" base_config = super().get_config()\n",
|
| 623 |
+
" config = {\n",
|
| 624 |
+
" \"cnn_model\": self.cnn_model,\n",
|
| 625 |
+
" \"encoder\": self.encoder,\n",
|
| 626 |
+
" \"decoder\": self.decoder,\n",
|
| 627 |
+
" \"image_aug\": self.image_aug,\n",
|
| 628 |
+
" }\n",
|
| 629 |
+
" return {**base_config, **config}\n",
|
| 630 |
+
"\n",
|
| 631 |
+
" @classmethod\n",
|
| 632 |
+
" def from_config(cls, config):\n",
|
| 633 |
+
" # Note that you can also use [`keras.saving.deserialize_keras_object`](/api/models/model_saving_apis/serialization_utils#deserializekerasobject-function) here\n",
|
| 634 |
+
" config[\"cnn_model\"] = keras.saving.deserialize_keras_object(config[\"cnn_model\"])\n",
|
| 635 |
+
" config[\"encoder\"] = keras.saving.deserialize_keras_object(config[\"encoder\"])\n",
|
| 636 |
+
" config[\"decoder\"] = keras.saving.deserialize_keras_object(config[\"decoder\"])\n",
|
| 637 |
+
" config[\"image_aug\"] = keras.saving.deserialize_keras_object(config[\"image_aug\"])\n",
|
| 638 |
+
"\n",
|
| 639 |
+
" # Instantiate the ImageCaptioningModel with the remaining configuration\n",
|
| 640 |
+
" return cls(**config)\n",
|
| 641 |
+
"\n",
|
| 642 |
+
" def call(self, inputs, training):\n",
|
| 643 |
+
" img, caption = inputs\n",
|
| 644 |
+
" if self.image_aug:\n",
|
| 645 |
+
" img = self.image_aug(img)\n",
|
| 646 |
+
" img_embed = self.cnn_model(img)\n",
|
| 647 |
+
" encoder_out = self.encoder(img_embed, training=training)\n",
|
| 648 |
+
" pred = self.decoder(caption, encoder_out, training=training)\n",
|
| 649 |
+
" return pred\n",
|
| 650 |
+
"\n",
|
| 651 |
+
"\n"
|
| 652 |
+
]
|
| 653 |
+
},
|
| 654 |
+
{
|
| 655 |
+
"cell_type": "code",
|
| 656 |
+
"execution_count": null,
|
| 657 |
+
"metadata": {
|
| 658 |
+
"id": "MGCXWbEY6tTn"
|
| 659 |
+
},
|
| 660 |
+
"outputs": [],
|
| 661 |
+
"source": [
|
| 662 |
+
"cnn_model = get_cnn_model()\n",
|
| 663 |
+
"encoder = TransformerEncoderBlock(embed_dim=EMBED_DIM, dense_dim=FF_DIM, num_heads=1)\n",
|
| 664 |
+
"decoder = TransformerDecoderBlock(embed_dim=EMBED_DIM, ff_dim=FF_DIM, num_heads=2)\n",
|
| 665 |
+
"caption_model = ImageCaptioningModel(\n",
|
| 666 |
+
" cnn_model=cnn_model,\n",
|
| 667 |
+
" encoder=encoder,\n",
|
| 668 |
+
" decoder=decoder,\n",
|
| 669 |
+
" image_aug=image_augmentation,\n",
|
| 670 |
+
")"
|
| 671 |
+
]
|
| 672 |
+
},
|
| 673 |
+
{
|
| 674 |
+
"cell_type": "code",
|
| 675 |
+
"execution_count": null,
|
| 676 |
+
"metadata": {
|
| 677 |
+
"colab": {
|
| 678 |
+
"base_uri": "https://localhost:8080/",
|
| 679 |
+
"height": 391
|
| 680 |
+
},
|
| 681 |
+
"id": "LtUx3PjMB6aJ",
|
| 682 |
+
"outputId": "3cdc513a-321d-425b-a617-549e42fbf404"
|
| 683 |
+
},
|
| 684 |
+
"outputs": [],
|
| 685 |
+
"source": [
|
| 686 |
+
"\n",
|
| 687 |
+
"early_stopping = keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)\n",
|
| 688 |
+
"\n",
|
| 689 |
+
"\n",
|
| 690 |
+
"@keras.saving.register_keras_serializable()\n",
|
| 691 |
+
"class LRSchedule(keras.optimizers.schedules.LearningRateSchedule):\n",
|
| 692 |
+
" def __init__(self, post_warmup_learning_rate, warmup_steps, **kwargs):\n",
|
| 693 |
+
" super().__init__(**kwargs)\n",
|
| 694 |
+
" self.post_warmup_learning_rate = post_warmup_learning_rate\n",
|
| 695 |
+
" self.warmup_steps = warmup_steps\n",
|
| 696 |
+
"\n",
|
| 697 |
+
" def get_config(self):\n",
|
| 698 |
+
" config = {\n",
|
| 699 |
+
" \"post_warmup_learning_rate\": self.post_warmup_learning_rate,\n",
|
| 700 |
+
" \"warmup_steps\": self.warmup_steps,\n",
|
| 701 |
+
" }\n",
|
| 702 |
+
" return config\n",
|
| 703 |
+
"\n",
|
| 704 |
+
" def __call__(self, step):\n",
|
| 705 |
+
" global_step = tf.cast(step, tf.float32)\n",
|
| 706 |
+
" warmup_steps = tf.cast(self.warmup_steps, tf.float32)\n",
|
| 707 |
+
" warmup_progress = global_step / warmup_steps\n",
|
| 708 |
+
" warmup_learning_rate = self.post_warmup_learning_rate * warmup_progress\n",
|
| 709 |
+
" return tf.cond(\n",
|
| 710 |
+
" global_step < warmup_steps,\n",
|
| 711 |
+
" lambda: warmup_learning_rate,\n",
|
| 712 |
+
" lambda: self.post_warmup_learning_rate,\n",
|
| 713 |
+
" )\n",
|
| 714 |
+
"\n",
|
| 715 |
+
"\n",
|
| 716 |
+
"num_train_steps = len(train_dataset) * EPOCHS\n",
|
| 717 |
+
"num_warmup_steps = num_train_steps // 15\n",
|
| 718 |
+
"lr_schedule = LRSchedule(post_warmup_learning_rate=1e-4, warmup_steps=num_warmup_steps)\n",
|
| 719 |
+
"\n",
|
| 720 |
+
"caption_model.compile(optimizer=keras.optimizers.Adam(lr_schedule), loss='sparse_categorical_crossentropy',\n",
|
| 721 |
+
" metrics=['accuracy'])\n",
|
| 722 |
+
"\n",
|
| 723 |
+
"caption_model.fit(\n",
|
| 724 |
+
" train_dataset,\n",
|
| 725 |
+
" epochs=EPOCHS,\n",
|
| 726 |
+
" validation_data=valid_dataset,\n",
|
| 727 |
+
" callbacks=[early_stopping],\n",
|
| 728 |
+
")"
|
| 729 |
+
]
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"cell_type": "code",
|
| 733 |
+
"execution_count": null,
|
| 734 |
+
"metadata": {
|
| 735 |
+
"id": "M10k_8_gBKxz"
|
| 736 |
+
},
|
| 737 |
+
"outputs": [],
|
| 738 |
+
"source": [
|
| 739 |
+
"caption_model.save(\"caption_model.keras\")"
|
| 740 |
+
]
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"cell_type": "code",
|
| 744 |
+
"execution_count": null,
|
| 745 |
+
"metadata": {
|
| 746 |
+
"id": "f1FD15MiBQSh"
|
| 747 |
+
},
|
| 748 |
+
"outputs": [],
|
| 749 |
+
"source": [
|
| 750 |
+
"loaded_model = keras.models.load_model(\"caption_model.keras\", compile=True)"
|
| 751 |
+
]
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"cell_type": "code",
|
| 755 |
+
"execution_count": null,
|
| 756 |
+
"metadata": {
|
| 757 |
+
"colab": {
|
| 758 |
+
"base_uri": "https://localhost:8080/"
|
| 759 |
+
},
|
| 760 |
+
"id": "ULoizN2kfR2W",
|
| 761 |
+
"outputId": "fa3f0e8f-f1cc-4821-8f37-3977c6feb047"
|
| 762 |
+
},
|
| 763 |
+
"outputs": [],
|
| 764 |
+
"source": [
|
| 765 |
+
"caption_model.summary()"
|
| 766 |
+
]
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"cell_type": "code",
|
| 770 |
+
"execution_count": null,
|
| 771 |
+
"metadata": {
|
| 772 |
+
"colab": {
|
| 773 |
+
"base_uri": "https://localhost:8080/"
|
| 774 |
+
},
|
| 775 |
+
"id": "MUTEhm28fVdN",
|
| 776 |
+
"outputId": "b020cfe6-b3e4-4c84-cf58-e59a233c6035"
|
| 777 |
+
},
|
| 778 |
+
"outputs": [],
|
| 779 |
+
"source": [
|
| 780 |
+
"loaded_model.summary()"
|
| 781 |
+
]
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"cell_type": "code",
|
| 785 |
+
"execution_count": null,
|
| 786 |
+
"metadata": {
|
| 787 |
+
"colab": {
|
| 788 |
+
"base_uri": "https://localhost:8080/"
|
| 789 |
+
},
|
| 790 |
+
"id": "k4H_CsBUYBSi",
|
| 791 |
+
"outputId": "590ecbca-1980-4456-89f1-ce0b2643506f"
|
| 792 |
+
},
|
| 793 |
+
"outputs": [],
|
| 794 |
+
"source": [
|
| 795 |
+
"caption_model.evaluate(valid_dataset)"
|
| 796 |
+
]
|
| 797 |
+
},
|
| 798 |
+
{
|
| 799 |
+
"cell_type": "code",
|
| 800 |
+
"execution_count": null,
|
| 801 |
+
"metadata": {
|
| 802 |
+
"colab": {
|
| 803 |
+
"base_uri": "https://localhost:8080/"
|
| 804 |
+
},
|
| 805 |
+
"id": "xzYtGvSPYA5H",
|
| 806 |
+
"outputId": "5b103038-b02d-491a-d08c-c252682590fd"
|
| 807 |
+
},
|
| 808 |
+
"outputs": [],
|
| 809 |
+
"source": [
|
| 810 |
+
"loaded_model.evaluate(valid_dataset)"
|
| 811 |
+
]
|
| 812 |
+
},
|
| 813 |
+
{
|
| 814 |
+
"cell_type": "code",
|
| 815 |
+
"execution_count": null,
|
| 816 |
+
"metadata": {
|
| 817 |
+
"id": "UvRoJqZ-Xp7g"
|
| 818 |
+
},
|
| 819 |
+
"outputs": [],
|
| 820 |
+
"source": [
|
| 821 |
+
"import matplotlib.pyplot as plt"
|
| 822 |
+
]
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"cell_type": "code",
|
| 826 |
+
"execution_count": null,
|
| 827 |
+
"metadata": {
|
| 828 |
+
"colab": {
|
| 829 |
+
"base_uri": "https://localhost:8080/",
|
| 830 |
+
"height": 452
|
| 831 |
+
},
|
| 832 |
+
"id": "5edj0qS3YCTZ",
|
| 833 |
+
"outputId": "fefb8277-944e-4a42-aa64-aef5df6ab92b"
|
| 834 |
+
},
|
| 835 |
+
"outputs": [],
|
| 836 |
+
"source": [
|
| 837 |
+
"\n",
|
| 838 |
+
"\n",
|
| 839 |
+
"vocab = vectorization.get_vocabulary()\n",
|
| 840 |
+
"index_lookup = dict(zip(range(len(vocab)), vocab))\n",
|
| 841 |
+
"max_decoded_sentence_length = SEQ_LENGTH - 1\n",
|
| 842 |
+
"valid_images = list(X_train_en)\n",
|
| 843 |
+
"\n",
|
| 844 |
+
"\n",
|
| 845 |
+
"def generate_caption():\n",
|
| 846 |
+
" # Select a random image from the validation dataset\n",
|
| 847 |
+
" sample_img = np.random.choice(valid_images)\n",
|
| 848 |
+
"\n",
|
| 849 |
+
" # Read the image from the disk\n",
|
| 850 |
+
" sample_img = decode_and_resize(sample_img)\n",
|
| 851 |
+
" img = sample_img.numpy().clip(0, 255).astype(np.uint8)\n",
|
| 852 |
+
" plt.imshow(img)\n",
|
| 853 |
+
" plt.show()\n",
|
| 854 |
+
"\n",
|
| 855 |
+
" # Pass the image to the CNN\n",
|
| 856 |
+
" img = tf.expand_dims(sample_img, 0)\n",
|
| 857 |
+
" img = caption_model.cnn_model(img)\n",
|
| 858 |
+
"\n",
|
| 859 |
+
" # Pass the image features to the Transformer encoder\n",
|
| 860 |
+
" encoded_img = caption_model.encoder(img, training=False)\n",
|
| 861 |
+
"\n",
|
| 862 |
+
" # Generate the caption using the Transformer decoder\n",
|
| 863 |
+
" decoded_caption = \"<start> \"\n",
|
| 864 |
+
" for i in range(max_decoded_sentence_length):\n",
|
| 865 |
+
" tokenized_caption = vectorization([decoded_caption])\n",
|
| 866 |
+
" mask = tf.math.not_equal(tokenized_caption, 0)\n",
|
| 867 |
+
" predictions = caption_model.decoder(\n",
|
| 868 |
+
" tokenized_caption, encoded_img, training=False, mask=mask\n",
|
| 869 |
+
" )\n",
|
| 870 |
+
" sampled_token_index = np.argmax(predictions[0, i, :])\n",
|
| 871 |
+
" sampled_token = index_lookup[sampled_token_index]\n",
|
| 872 |
+
" if sampled_token == \"<end>\":\n",
|
| 873 |
+
" break\n",
|
| 874 |
+
" decoded_caption += \" \" + sampled_token\n",
|
| 875 |
+
"\n",
|
| 876 |
+
" decoded_caption = decoded_caption.replace(\"<start> \", \"\")\n",
|
| 877 |
+
" decoded_caption = decoded_caption.replace(\" <end>\", \"\").strip()\n",
|
| 878 |
+
" print(\"Predicted Caption: \", decoded_caption)\n",
|
| 879 |
+
"\n",
|
| 880 |
+
"\n",
|
| 881 |
+
"# Check predictions for a few samples\n",
|
| 882 |
+
"generate_caption()\n"
|
| 883 |
+
]
|
| 884 |
+
},
|
| 885 |
+
{
|
| 886 |
+
"cell_type": "code",
|
| 887 |
+
"execution_count": null,
|
| 888 |
+
"metadata": {
|
| 889 |
+
"colab": {
|
| 890 |
+
"base_uri": "https://localhost:8080/",
|
| 891 |
+
"height": 715
|
| 892 |
+
},
|
| 893 |
+
"id": "3zRF5hAEbOdm",
|
| 894 |
+
"outputId": "85611bc9-70b9-4282-aac4-53d3af5c2c18"
|
| 895 |
+
},
|
| 896 |
+
"outputs": [],
|
| 897 |
+
"source": [
|
| 898 |
+
"\n",
|
| 899 |
+
"\n",
|
| 900 |
+
"vocab = vectorization.get_vocabulary()\n",
|
| 901 |
+
"index_lookup = dict(zip(range(len(vocab)), vocab))\n",
|
| 902 |
+
"max_decoded_sentence_length = SEQ_LENGTH - 1\n",
|
| 903 |
+
"valid_images = list(X_train_en)\n",
|
| 904 |
+
"\n",
|
| 905 |
+
"\n",
|
| 906 |
+
"def generate_caption():\n",
|
| 907 |
+
" # Select a random image from the validation dataset\n",
|
| 908 |
+
" sample_img = np.random.choice(valid_images)\n",
|
| 909 |
+
"\n",
|
| 910 |
+
" # Read the image from the disk\n",
|
| 911 |
+
" sample_img = decode_and_resize(sample_img)\n",
|
| 912 |
+
" img = sample_img.numpy().clip(0, 255).astype(np.uint8)\n",
|
| 913 |
+
" plt.imshow(img)\n",
|
| 914 |
+
" plt.show()\n",
|
| 915 |
+
"\n",
|
| 916 |
+
" # Pass the image to the CNN\n",
|
| 917 |
+
" img = tf.expand_dims(sample_img, 0)\n",
|
| 918 |
+
" img = loaded_model.cnn_model(img)\n",
|
| 919 |
+
"\n",
|
| 920 |
+
" # Pass the image features to the Transformer encoder\n",
|
| 921 |
+
" encoded_img = loaded_model.encoder(img, training=False)\n",
|
| 922 |
+
"\n",
|
| 923 |
+
" # Generate the caption using the Transformer decoder\n",
|
| 924 |
+
" decoded_caption = \"<start> \"\n",
|
| 925 |
+
" for i in range(max_decoded_sentence_length):\n",
|
| 926 |
+
" tokenized_caption = vectorization([decoded_caption])\n",
|
| 927 |
+
" mask = tf.math.not_equal(tokenized_caption, 0)\n",
|
| 928 |
+
" predictions = loaded_model.decoder(\n",
|
| 929 |
+
" tokenized_caption, encoded_img, training=False, mask=mask\n",
|
| 930 |
+
" )\n",
|
| 931 |
+
" sampled_token_index = np.argmax(predictions[0, i, :])\n",
|
| 932 |
+
" sampled_token = index_lookup[sampled_token_index]\n",
|
| 933 |
+
" if sampled_token == \"<end>\":\n",
|
| 934 |
+
" break\n",
|
| 935 |
+
" decoded_caption += \" \" + sampled_token\n",
|
| 936 |
+
"\n",
|
| 937 |
+
" decoded_caption = decoded_caption.replace(\"<start> \", \"\")\n",
|
| 938 |
+
" decoded_caption = decoded_caption.replace(\" <end>\", \"\").strip()\n",
|
| 939 |
+
" print(\"Predicted Caption: \", decoded_caption)\n",
|
| 940 |
+
"\n",
|
| 941 |
+
"\n",
|
| 942 |
+
"# Check predictions for a few samples\n",
|
| 943 |
+
"generate_caption()\n"
|
| 944 |
+
]
|
| 945 |
+
},
|
| 946 |
+
{
|
| 947 |
+
"cell_type": "code",
|
| 948 |
+
"execution_count": null,
|
| 949 |
+
"metadata": {
|
| 950 |
+
"id": "4n5iXcJwwB9-"
|
| 951 |
+
},
|
| 952 |
+
"outputs": [],
|
| 953 |
+
"source": []
|
| 954 |
+
}
|
| 955 |
+
],
|
| 956 |
+
"metadata": {
|
| 957 |
+
"accelerator": "GPU",
|
| 958 |
+
"colab": {
|
| 959 |
+
"gpuType": "T4",
|
| 960 |
+
"provenance": []
|
| 961 |
+
},
|
| 962 |
+
"kernelspec": {
|
| 963 |
+
"display_name": "Python 3",
|
| 964 |
+
"name": "python3"
|
| 965 |
+
},
|
| 966 |
+
"language_info": {
|
| 967 |
+
"name": "python"
|
| 968 |
+
}
|
| 969 |
+
},
|
| 970 |
+
"nbformat": 4,
|
| 971 |
+
"nbformat_minor": 0
|
| 972 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
keras==2.15.0
|
| 2 |
+
tensorflow==2.15.0
|
| 3 |
+
numpy
|
| 4 |
+
matplotlib
|
| 5 |
+
gradio
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (194 Bytes). View file
|
|
|
src/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (210 Bytes). View file
|
|
|
src/components/__init__.py
ADDED
|
File without changes
|
src/components/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (205 Bytes). View file
|
|
|
src/components/__pycache__/model.cpython-310.pyc
ADDED
|
Binary file (7.02 kB). View file
|
|
|
src/components/model.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import keras
|
| 2 |
+
from keras import layers
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
|
| 5 |
+
IMAGE_SIZE = (299, 299)
|
| 6 |
+
VOCAB_SIZE = 10000
|
| 7 |
+
SEQ_LENGTH = 25
|
| 8 |
+
EMBED_DIM = 512
|
| 9 |
+
FF_DIM = 512
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
image_augmentation = keras.Sequential(
|
| 13 |
+
[
|
| 14 |
+
keras.layers.RandomFlip("horizontal"),
|
| 15 |
+
keras.layers.RandomRotation(0.2),
|
| 16 |
+
keras.layers.RandomContrast(0.3),
|
| 17 |
+
]
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@keras.saving.register_keras_serializable()
|
| 22 |
+
def get_cnn_model():
|
| 23 |
+
base_model = keras.applications.efficientnet.EfficientNetB0(
|
| 24 |
+
input_shape=(*IMAGE_SIZE, 3),
|
| 25 |
+
include_top=False,
|
| 26 |
+
weights="imagenet"
|
| 27 |
+
)
|
| 28 |
+
base_model.trainable = False
|
| 29 |
+
base_model_out = base_model.output
|
| 30 |
+
base_model_out = layers.Reshape(
|
| 31 |
+
(-1, base_model_out.shape[-1]))(base_model_out)
|
| 32 |
+
cnn_model = keras.models.Model(base_model.input, base_model_out)
|
| 33 |
+
return cnn_model
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@keras.saving.register_keras_serializable()
|
| 37 |
+
class TransformerEncoderBlock(layers.Layer):
|
| 38 |
+
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
|
| 39 |
+
super().__init__(**kwargs)
|
| 40 |
+
self.embed_dim = embed_dim
|
| 41 |
+
self.dense_dim = dense_dim
|
| 42 |
+
self.num_heads = num_heads
|
| 43 |
+
self.attention_1 = layers.MultiHeadAttention(
|
| 44 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.0
|
| 45 |
+
)
|
| 46 |
+
self.layernorm_1 = layers.LayerNormalization()
|
| 47 |
+
self.layernorm_2 = layers.LayerNormalization()
|
| 48 |
+
self.dense_1 = layers.Dense(embed_dim, activation="relu")
|
| 49 |
+
|
| 50 |
+
def get_config(self):
|
| 51 |
+
base_config = super().get_config()
|
| 52 |
+
config = {
|
| 53 |
+
"embed_dim": self.embed_dim,
|
| 54 |
+
"dense_dim": self.dense_dim,
|
| 55 |
+
"num_heads": self.num_heads,
|
| 56 |
+
}
|
| 57 |
+
return {**base_config, **config}
|
| 58 |
+
|
| 59 |
+
def call(self, inputs, training):
|
| 60 |
+
inputs = self.layernorm_1(inputs)
|
| 61 |
+
inputs = self.dense_1(inputs)
|
| 62 |
+
|
| 63 |
+
attention_output_1 = self.attention_1(
|
| 64 |
+
query=inputs,
|
| 65 |
+
value=inputs,
|
| 66 |
+
key=inputs,
|
| 67 |
+
training=training,
|
| 68 |
+
)
|
| 69 |
+
out_1 = self.layernorm_2(inputs + attention_output_1)
|
| 70 |
+
return out_1
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@keras.saving.register_keras_serializable()
|
| 74 |
+
class PositionalEmbedding(layers.Layer):
|
| 75 |
+
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
|
| 76 |
+
super().__init__(**kwargs)
|
| 77 |
+
self.token_embeddings = layers.Embedding(
|
| 78 |
+
input_dim=vocab_size, output_dim=embed_dim, mask_zero=True
|
| 79 |
+
)
|
| 80 |
+
self.position_embeddings = layers.Embedding(
|
| 81 |
+
input_dim=sequence_length, output_dim=embed_dim
|
| 82 |
+
)
|
| 83 |
+
self.sequence_length = sequence_length
|
| 84 |
+
self.vocab_size = vocab_size
|
| 85 |
+
self.embed_dim = embed_dim
|
| 86 |
+
|
| 87 |
+
self.add = layers.Add()
|
| 88 |
+
|
| 89 |
+
def get_config(self):
|
| 90 |
+
base_config = super().get_config()
|
| 91 |
+
config = {
|
| 92 |
+
"sequence_length": self.sequence_length,
|
| 93 |
+
"vocab_size": self.vocab_size,
|
| 94 |
+
"embed_dim": self.embed_dim,
|
| 95 |
+
}
|
| 96 |
+
return {**base_config, **config}
|
| 97 |
+
|
| 98 |
+
def call(self, seq):
|
| 99 |
+
seq = self.token_embeddings(seq)
|
| 100 |
+
|
| 101 |
+
x = tf.range(tf.shape(seq)[1])
|
| 102 |
+
x = x[tf.newaxis, :]
|
| 103 |
+
x = self.position_embeddings(x)
|
| 104 |
+
|
| 105 |
+
return self.add([seq, x])
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@keras.saving.register_keras_serializable()
|
| 109 |
+
class TransformerDecoderBlock(layers.Layer):
|
| 110 |
+
def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):
|
| 111 |
+
super().__init__(**kwargs)
|
| 112 |
+
self.embed_dim = embed_dim
|
| 113 |
+
self.ff_dim = ff_dim
|
| 114 |
+
self.num_heads = num_heads
|
| 115 |
+
self.attention_1 = layers.MultiHeadAttention(
|
| 116 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
|
| 117 |
+
)
|
| 118 |
+
self.attention_2 = layers.MultiHeadAttention(
|
| 119 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
|
| 120 |
+
)
|
| 121 |
+
self.ffn_layer_1 = layers.Dense(ff_dim, activation="relu")
|
| 122 |
+
self.ffn_layer_2 = layers.Dense(embed_dim)
|
| 123 |
+
|
| 124 |
+
self.layernorm_1 = layers.LayerNormalization()
|
| 125 |
+
self.layernorm_2 = layers.LayerNormalization()
|
| 126 |
+
self.layernorm_3 = layers.LayerNormalization()
|
| 127 |
+
|
| 128 |
+
self.embedding = PositionalEmbedding(
|
| 129 |
+
embed_dim=EMBED_DIM,
|
| 130 |
+
sequence_length=SEQ_LENGTH,
|
| 131 |
+
vocab_size=VOCAB_SIZE,
|
| 132 |
+
)
|
| 133 |
+
self.out = layers.Dense(VOCAB_SIZE, activation="softmax")
|
| 134 |
+
|
| 135 |
+
self.dropout_1 = layers.Dropout(0.3)
|
| 136 |
+
self.dropout_2 = layers.Dropout(0.5)
|
| 137 |
+
self.supports_masking = True
|
| 138 |
+
|
| 139 |
+
def get_config(self):
|
| 140 |
+
base_config = super().get_config()
|
| 141 |
+
config = {
|
| 142 |
+
"embed_dim": self.embed_dim,
|
| 143 |
+
"ff_dim": self.ff_dim,
|
| 144 |
+
"num_heads": self.num_heads,
|
| 145 |
+
|
| 146 |
+
}
|
| 147 |
+
return {**base_config, **config}
|
| 148 |
+
|
| 149 |
+
def call(self, inputs, encoder_outputs, training, mask=None):
|
| 150 |
+
inputs = self.embedding(inputs)
|
| 151 |
+
|
| 152 |
+
attention_output_1 = self.attention_1(
|
| 153 |
+
query=inputs,
|
| 154 |
+
value=inputs,
|
| 155 |
+
key=inputs,
|
| 156 |
+
training=training,
|
| 157 |
+
use_causal_mask=True
|
| 158 |
+
)
|
| 159 |
+
out_1 = self.layernorm_1(inputs + attention_output_1)
|
| 160 |
+
|
| 161 |
+
attention_output_2 = self.attention_2(
|
| 162 |
+
query=out_1,
|
| 163 |
+
value=encoder_outputs,
|
| 164 |
+
key=encoder_outputs,
|
| 165 |
+
training=training,
|
| 166 |
+
)
|
| 167 |
+
out_2 = self.layernorm_2(out_1 + attention_output_2)
|
| 168 |
+
|
| 169 |
+
ffn_out = self.ffn_layer_1(out_2)
|
| 170 |
+
ffn_out = self.dropout_1(ffn_out, training=training)
|
| 171 |
+
ffn_out = self.ffn_layer_2(ffn_out)
|
| 172 |
+
|
| 173 |
+
ffn_out = self.layernorm_3(ffn_out + out_2, training=training)
|
| 174 |
+
ffn_out = self.dropout_2(ffn_out, training=training)
|
| 175 |
+
preds = self.out(ffn_out)
|
| 176 |
+
return preds
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
@keras.saving.register_keras_serializable()
|
| 180 |
+
class ImageCaptioningModel(keras.Model):
|
| 181 |
+
def __init__(
|
| 182 |
+
self,
|
| 183 |
+
cnn_model,
|
| 184 |
+
encoder,
|
| 185 |
+
decoder,
|
| 186 |
+
image_aug=None,
|
| 187 |
+
**kwargs
|
| 188 |
+
):
|
| 189 |
+
super().__init__(**kwargs)
|
| 190 |
+
self.cnn_model = cnn_model
|
| 191 |
+
self.encoder = encoder
|
| 192 |
+
self.decoder = decoder
|
| 193 |
+
self.image_aug = image_aug
|
| 194 |
+
|
| 195 |
+
def get_config(self):
|
| 196 |
+
base_config = super().get_config()
|
| 197 |
+
config = {
|
| 198 |
+
"cnn_model": self.cnn_model,
|
| 199 |
+
"encoder": self.encoder,
|
| 200 |
+
"decoder": self.decoder,
|
| 201 |
+
"image_aug": self.image_aug,
|
| 202 |
+
}
|
| 203 |
+
return {**base_config, **config}
|
| 204 |
+
|
| 205 |
+
@classmethod
|
| 206 |
+
def from_config(cls, config):
|
| 207 |
+
# Note that you can also use [`keras.saving.deserialize_keras_object`](/api/models/model_saving_apis/serialization_utils#deserializekerasobject-function) here
|
| 208 |
+
config["cnn_model"] = keras.saving.deserialize_keras_object(
|
| 209 |
+
config["cnn_model"])
|
| 210 |
+
config["encoder"] = keras.saving.deserialize_keras_object(
|
| 211 |
+
config["encoder"])
|
| 212 |
+
config["decoder"] = keras.saving.deserialize_keras_object(
|
| 213 |
+
config["decoder"])
|
| 214 |
+
config["image_aug"] = keras.saving.deserialize_keras_object(
|
| 215 |
+
config["image_aug"])
|
| 216 |
+
|
| 217 |
+
# Instantiate the ImageCaptioningModel with the remaining configuration
|
| 218 |
+
return cls(**config)
|
| 219 |
+
|
| 220 |
+
def call(self, inputs, training):
|
| 221 |
+
img, caption = inputs
|
| 222 |
+
if self.image_aug:
|
| 223 |
+
img = self.image_aug(img)
|
| 224 |
+
img_embed = self.cnn_model(img)
|
| 225 |
+
encoder_out = self.encoder(img_embed, training=training)
|
| 226 |
+
pred = self.decoder(caption, encoder_out, training=training)
|
| 227 |
+
return pred
|
| 228 |
+
|
| 229 |
+
@keras.saving.register_keras_serializable()
|
| 230 |
+
class LRSchedule(keras.optimizers.schedules.LearningRateSchedule):
|
| 231 |
+
def __init__(self, post_warmup_learning_rate, warmup_steps, **kwargs):
|
| 232 |
+
super().__init__(**kwargs)
|
| 233 |
+
self.post_warmup_learning_rate = post_warmup_learning_rate
|
| 234 |
+
self.warmup_steps = warmup_steps
|
| 235 |
+
|
| 236 |
+
def get_config(self):
|
| 237 |
+
config = {
|
| 238 |
+
"post_warmup_learning_rate": self.post_warmup_learning_rate,
|
| 239 |
+
"warmup_steps": self.warmup_steps,
|
| 240 |
+
}
|
| 241 |
+
return config
|
| 242 |
+
|
| 243 |
+
def __call__(self, step):
|
| 244 |
+
global_step = tf.cast(step, tf.float32)
|
| 245 |
+
warmup_steps = tf.cast(self.warmup_steps, tf.float32)
|
| 246 |
+
warmup_progress = global_step / warmup_steps
|
| 247 |
+
warmup_learning_rate = self.post_warmup_learning_rate * warmup_progress
|
| 248 |
+
return tf.cond(
|
| 249 |
+
global_step < warmup_steps,
|
| 250 |
+
lambda: warmup_learning_rate,
|
| 251 |
+
lambda: self.post_warmup_learning_rate,
|
| 252 |
+
)
|
src/pipeline/__init__.py
ADDED
|
File without changes
|
src/pipeline/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (203 Bytes). View file
|
|
|
src/pipeline/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (219 Bytes). View file
|
|
|
src/pipeline/__pycache__/make_dataset.cpython-310.pyc
ADDED
|
Binary file (3.29 kB). View file
|
|
|
src/pipeline/__pycache__/predict.cpython-310.pyc
ADDED
|
Binary file (2.49 kB). View file
|
|
|
src/pipeline/__pycache__/predict.cpython-311.pyc
ADDED
|
Binary file (4.57 kB). View file
|
|
|
src/pipeline/make_dataset.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pathlib
|
| 2 |
+
import keras
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
IMAGES_PATH = "Flicker8k_Dataset"
|
| 10 |
+
IMAGE_SIZE = (299, 299)
|
| 11 |
+
VOCAB_SIZE = 10000
|
| 12 |
+
SEQ_LENGTH = 25
|
| 13 |
+
BATCH_SIZE = 64
|
| 14 |
+
AUTOTUNE = tf.data.AUTOTUNE
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
path = pathlib.Path(".")
|
| 18 |
+
keras.utils.get_file(
|
| 19 |
+
origin='https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_Dataset.zip',
|
| 20 |
+
cache_dir='.',
|
| 21 |
+
cache_subdir=path,
|
| 22 |
+
extract=True)
|
| 23 |
+
keras.utils.get_file(
|
| 24 |
+
origin='https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_text.zip',
|
| 25 |
+
cache_dir='.',
|
| 26 |
+
cache_subdir=path,
|
| 27 |
+
extract=True)
|
| 28 |
+
|
| 29 |
+
dataset = pathlib.Path(path, "Flickr8k.token.txt").read_text(
|
| 30 |
+
encoding='utf-8').splitlines()
|
| 31 |
+
|
| 32 |
+
dataset = [line.split('\t') for line in dataset]
|
| 33 |
+
|
| 34 |
+
dataset = [[os.path.join(IMAGES_PATH, fname.split(
|
| 35 |
+
'#')[0].strip()), caption] for (fname, caption) in dataset]
|
| 36 |
+
|
| 37 |
+
caption_mapping = {}
|
| 38 |
+
text_data = []
|
| 39 |
+
X_en_data = []
|
| 40 |
+
X_de_data = []
|
| 41 |
+
Y_data = []
|
| 42 |
+
|
| 43 |
+
for img_name, caption in dataset:
|
| 44 |
+
if img_name.endswith("jpg"):
|
| 45 |
+
X_de_data.append("<start> " + caption.strip().replace(".", ""))
|
| 46 |
+
Y_data.append(caption.strip().replace(".", "") + " <end>")
|
| 47 |
+
text_data.append(
|
| 48 |
+
"<start> " + caption.strip().replace(".", "") + " <end>")
|
| 49 |
+
X_en_data.append(img_name)
|
| 50 |
+
|
| 51 |
+
if img_name in caption_mapping:
|
| 52 |
+
caption_mapping[img_name].append(caption)
|
| 53 |
+
else:
|
| 54 |
+
caption_mapping[img_name] = [caption]
|
| 55 |
+
|
| 56 |
+
train_size = 0.8
|
| 57 |
+
shuffle = True
|
| 58 |
+
np.random.seed(42)
|
| 59 |
+
|
| 60 |
+
zipped = list(zip(X_en_data, X_de_data, Y_data))
|
| 61 |
+
np.random.shuffle(zipped)
|
| 62 |
+
X_en_data, X_de_data, Y_data = zip(*zipped)
|
| 63 |
+
|
| 64 |
+
train_size = int(len(X_en_data)*train_size)
|
| 65 |
+
X_train_en = list(X_en_data[:train_size])
|
| 66 |
+
X_train_de = list(X_de_data[:train_size])
|
| 67 |
+
Y_train = list(Y_data[:train_size])
|
| 68 |
+
X_valid_en = list(X_en_data[train_size:])
|
| 69 |
+
X_valid_de = list(X_de_data[train_size:])
|
| 70 |
+
Y_valid = list(Y_data[train_size:])
|
| 71 |
+
|
| 72 |
+
strip_chars = "!\"#$%&'()*+,-./:;=?@[\]^_`{|}~"
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def custom_standardization(input_string):
|
| 76 |
+
lowercase = tf.strings.lower(input_string)
|
| 77 |
+
return tf.strings.regex_replace(lowercase, f'{re.escape(strip_chars)}', '')
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
vectorization = keras.layers.TextVectorization(
|
| 81 |
+
max_tokens=VOCAB_SIZE,
|
| 82 |
+
output_mode="int",
|
| 83 |
+
output_sequence_length=SEQ_LENGTH,
|
| 84 |
+
standardize=custom_standardization,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
vectorization.adapt(text_data)
|
| 88 |
+
|
| 89 |
+
vocab = np.array(vectorization.get_vocabulary())
|
| 90 |
+
np.save('./artifacts/vocabulary.npy', vocab)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def decode_and_resize(img_path):
|
| 94 |
+
img = tf.io.read_file(img_path)
|
| 95 |
+
img = tf.image.decode_jpeg(img, channels=3)
|
| 96 |
+
img = tf.image.resize(img, IMAGE_SIZE)
|
| 97 |
+
img = tf.image.convert_image_dtype(img, tf.float32)
|
| 98 |
+
return img
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def process_input(img_cap, y_captions):
|
| 102 |
+
img_path, x_captions = img_cap
|
| 103 |
+
return ((decode_and_resize(img_path), vectorization(x_captions)), vectorization(y_captions))
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def make_dataset(images, x_captions, y_captions):
|
| 107 |
+
dataset = tf.data.Dataset.from_tensor_slices(
|
| 108 |
+
((images, x_captions), y_captions))
|
| 109 |
+
dataset = dataset.map(process_input, num_parallel_calls=AUTOTUNE)
|
| 110 |
+
dataset = dataset.batch(BATCH_SIZE).prefetch(AUTOTUNE)
|
| 111 |
+
|
| 112 |
+
return dataset
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
train_dataset = make_dataset(X_train_en, X_train_de, Y_train)
|
| 116 |
+
|
| 117 |
+
valid_dataset = make_dataset(X_valid_en, X_valid_de, Y_valid)
|
src/pipeline/predict.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import keras
|
| 2 |
+
import numpy as np
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
import re
|
| 5 |
+
from src.components.model import get_cnn_model, TransformerEncoderBlock, TransformerDecoderBlock, ImageCaptioningModel, image_augmentation, LRSchedule
|
| 6 |
+
|
| 7 |
+
SEQ_LENGTH = 25
|
| 8 |
+
VOCAB_SIZE = 10000
|
| 9 |
+
IMAGE_SIZE = (299, 299)
|
| 10 |
+
|
| 11 |
+
print("loading_model...")
|
| 12 |
+
loaded_model = keras.saving.load_model(
|
| 13 |
+
"./artifacts/caption_model.keras", compile=True)
|
| 14 |
+
print("model loaded...")
|
| 15 |
+
|
| 16 |
+
vocab = np.load("./artifacts/vocabulary.npy")
|
| 17 |
+
print("vocab loaded...")
|
| 18 |
+
data_txt = np.load("./artifacts/data_txt.npy").tolist()
|
| 19 |
+
print("vectorization data loaded...")
|
| 20 |
+
|
| 21 |
+
index_lookup = dict(zip(range(len(vocab)), vocab))
|
| 22 |
+
print("index lookup loaded...")
|
| 23 |
+
max_decoded_sentence_length = SEQ_LENGTH - 1
|
| 24 |
+
strip_chars = "!\"#$%&'()*+,-./:;=?@[\]^_`{|}~"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def custom_standardization(input_string):
|
| 28 |
+
lowercase = tf.strings.lower(input_string)
|
| 29 |
+
return tf.strings.regex_replace(lowercase, f'{re.escape(strip_chars)}', '')
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
vectorization = keras.layers.TextVectorization(
|
| 33 |
+
max_tokens=VOCAB_SIZE,
|
| 34 |
+
output_mode="int",
|
| 35 |
+
output_sequence_length=SEQ_LENGTH,
|
| 36 |
+
standardize=custom_standardization,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
vectorization.adapt(data_txt)
|
| 40 |
+
print("vectorization adapted...")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def decode_and_resize(image):
|
| 44 |
+
if isinstance(image, str):
|
| 45 |
+
img = tf.io.read_file(image)
|
| 46 |
+
img = tf.image.decode_jpeg(img, channels=3)
|
| 47 |
+
elif isinstance(image, np.ndarray):
|
| 48 |
+
img = tf.constant(image)
|
| 49 |
+
img = tf.image.resize(img, IMAGE_SIZE)
|
| 50 |
+
img = tf.image.convert_image_dtype(img, tf.float32)
|
| 51 |
+
return img
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def generate_caption(image):
|
| 55 |
+
|
| 56 |
+
sample_img = decode_and_resize(image)
|
| 57 |
+
|
| 58 |
+
# Pass the image to the CNN
|
| 59 |
+
img = tf.expand_dims(sample_img, 0)
|
| 60 |
+
img = loaded_model.cnn_model(img)
|
| 61 |
+
|
| 62 |
+
# Pass the image features to the Transformer encoder
|
| 63 |
+
encoded_img = loaded_model.encoder(img, training=False)
|
| 64 |
+
|
| 65 |
+
# Generate the caption using the Transformer decoder
|
| 66 |
+
decoded_caption = "<start> "
|
| 67 |
+
for i in range(max_decoded_sentence_length):
|
| 68 |
+
tokenized_caption = vectorization([decoded_caption])
|
| 69 |
+
mask = tf.math.not_equal(tokenized_caption, 0)
|
| 70 |
+
predictions = loaded_model.decoder(
|
| 71 |
+
tokenized_caption, encoded_img, training=False, mask=mask
|
| 72 |
+
)
|
| 73 |
+
sampled_token_index = np.argmax(predictions[0, i, :])
|
| 74 |
+
sampled_token = index_lookup[sampled_token_index]
|
| 75 |
+
if sampled_token == "<end>":
|
| 76 |
+
break
|
| 77 |
+
decoded_caption += " " + sampled_token
|
| 78 |
+
|
| 79 |
+
decoded_caption = decoded_caption.replace("<start> ", "")
|
| 80 |
+
decoded_caption = decoded_caption.replace(" <end>", "").strip()
|
| 81 |
+
return decoded_caption
|
src/pipeline/training.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import keras
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from make_dataset import train_dataset, valid_dataset
|
| 4 |
+
from src.components.model import get_cnn_model, TransformerEncoderBlock, TransformerDecoderBlock, ImageCaptioningModel, image_augmentation, LRSchedule
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
EMBED_DIM = 512
|
| 8 |
+
FF_DIM = 512
|
| 9 |
+
EPOCHS = 30
|
| 10 |
+
|
| 11 |
+
cnn_model = get_cnn_model()
|
| 12 |
+
encoder = TransformerEncoderBlock(
|
| 13 |
+
embed_dim=EMBED_DIM, dense_dim=FF_DIM, num_heads=1)
|
| 14 |
+
decoder = TransformerDecoderBlock(
|
| 15 |
+
embed_dim=EMBED_DIM, ff_dim=FF_DIM, num_heads=2)
|
| 16 |
+
caption_model = ImageCaptioningModel(
|
| 17 |
+
cnn_model=cnn_model,
|
| 18 |
+
encoder=encoder,
|
| 19 |
+
decoder=decoder,
|
| 20 |
+
image_aug=image_augmentation,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
early_stopping = keras.callbacks.EarlyStopping(
|
| 25 |
+
patience=3, restore_best_weights=True)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
num_train_steps = len(train_dataset) * EPOCHS
|
| 31 |
+
num_warmup_steps = num_train_steps // 15
|
| 32 |
+
lr_schedule = LRSchedule(post_warmup_learning_rate=1e-4,
|
| 33 |
+
warmup_steps=num_warmup_steps)
|
| 34 |
+
|
| 35 |
+
caption_model.compile(optimizer=keras.optimizers.Adam(lr_schedule), loss='sparse_categorical_crossentropy',
|
| 36 |
+
metrics=['accuracy'])
|
| 37 |
+
|
| 38 |
+
caption_model.fit(
|
| 39 |
+
train_dataset,
|
| 40 |
+
epochs=EPOCHS,
|
| 41 |
+
validation_data=valid_dataset,
|
| 42 |
+
callbacks=[early_stopping],
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
caption_model.save("./artifacts/caption_model1.keras")
|