Spaces:
Running
Running
File size: 1,624 Bytes
d0dcfdb 34ff59a d0dcfdb 9d5c86f d0dcfdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
import torch
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
model_name = 'tuner007/pegasus_paraphrase'
# torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name)
def paraphrase(text):
from sentence_splitter import SentenceSplitter, split_text_into_sentences
import torch
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
model_name = 'tuner007/pegasus_paraphrase'
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)
def get_response(input_text,num_return_sequences):
batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=True,padding='longest',max_length=60, return_tensors="pt").to(torch_device)
translated = model.generate(**batch,max_length=60,num_beams=10, num_return_sequences=num_return_sequences, temperature=2.0)
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
return tgt_text
splitter = SentenceSplitter(language='en')
sentence_list = splitter.split(text)
res = ''
for i in sentence_list:
a = get_response(i,1)
cur = ''
for j in a:
cur += j
cur += ' '
cur += '.'
res += cur
return res
iface = gr.Interface(fn=paraphrase, inputs="text", outputs="text")
iface.launch() |