import gradio as gr # from transformers import pipeline from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification from scipy.special import softmax MODEL = f"cardiffnlp/twitter-roberta-base-sentiment" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForSequenceClassification.from_pretrained(MODEL) def polarity_scores_roberta(example): encoded_text = tokenizer(example, return_tensors='pt') output = model(**encoded_text) scores = output[0][0].detach().numpy() scores = softmax(scores) scores_dict = { 'roberta_neg' : scores[0], 'roberta_neu' : scores[1], 'roberta_pos' : scores[2] } x=max(scores[0],scores[1],scores[2]) if x==scores[0]: return 'Negative' elif x==scores[1]: return 'Neutral' else: return 'Positive' def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=polarity_scores_roberta, inputs="text", outputs="text") iface.launch()