Spaces:
Build error
Build error
File size: 1,302 Bytes
b790f42 18b565b b790f42 a7d7769 b790f42 a7d7769 b790f42 18b565b b790f42 cec4a0c b790f42 fa713b6 b790f42 a7d7769 b790f42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import spacy
from keybert import KeyBERT
import numpy as np
import pandas as pd
import os
import re
import json
import seaborn as sns
import gradio as gr
# def separate_punc(text):
# return [token.text.lower() for token in text if token.text not in '\n\n \n\n\n!"-#$%&()--.*+,-/:;<=>?@[\\]^_`{|}~\t\n ']
kw_model = KeyBERT(model='all-mpnet-base-v2')
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
# Feed the training data through the pipeline
def run(text):
# separate_punc(text)
keywords = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english', highlight=False,)
keywords_list= list(dict(keywords).keys())
s='We suggest the following as potential topic name for the given article: \n '
for i in range (len(keywords_list)):
s = s+keywords_list[i] + '\n '
# if i<=len(keywords_list):
# print('Would you like another suggestion?')
# f=input()
# if f=='No':
# break
# else:
# print('Sorry That is all we can suggest')
return s
iface = gr.Interface(fn=run, inputs="text", outputs="text")
iface.launch() |