Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,288 Bytes
f214f36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
"""
Utilities for extracting and manipulating attention weights from transformer models,
starting from pre-computed hidden states.
This module provides functions to compute attention weights from various transformer
models (like Llama, Phi, Qwen, Gemma) and use them for attribution. We compute only
the relevant attention weights (as specified by `attribution_start` and
`attribution_end`) in order to be able to efficiently compute and store them. If we
were to use `output_attentions=True` in the forward pass, we would (1) only be able
to use the `eager` attention implementation, and (2) would need to store the entire
attention matrix which grows quadratically with the sequence length. Most of the
logic here is replicated from the `transformers` library.
If you'd like to perform attribution on a model that is not currently supported,
you can add it yourself by modifying `infer_model_type` and
`get_layer_attention_weights`. Please see `tests/attribution/test_attention.py`
to ensure that your implementation matches the expected attention weights when
using the `output_attentions=True`.
"""
import math
from typing import Any, Optional
import torch as ch
import transformers.models
def infer_model_type(model):
model_type_to_keyword = {
"llama": "llama",
"phi3": "phi",
"qwen2": "qwen",
"gemma3": "gemma",
}
for model_type, keyword in model_type_to_keyword.items():
if keyword in model.name_or_path.lower():
return model_type
else:
raise ValueError(f"Unknown model: {model.name_or_path}. Specify `model_type`.")
def get_helpers(model_type):
#for model_name in dir(transformers.models):
# if not model_name.startswith('__') and ("gemma" in model_name or "chatglm" in model_name):
# print(model_name)
if not hasattr(transformers.models, model_type):
raise ValueError(f"Unknown model: {model_type}")
model_module = getattr(transformers.models, model_type)
modeling_module = getattr(model_module, f"modeling_{model_type}")
return modeling_module.apply_rotary_pos_emb, modeling_module.repeat_kv
def get_position_ids_and_attention_mask(model, hidden_states):
input_embeds = hidden_states[0]
_, seq_len, _ = input_embeds.shape
position_ids = ch.arange(0, seq_len, device=model.device).unsqueeze(0)
attention_mask = ch.ones(
seq_len, seq_len + 1, device=model.device, dtype=model.dtype
)
attention_mask = ch.triu(attention_mask, diagonal=1)
attention_mask *= ch.finfo(model.dtype).min
attention_mask = attention_mask[None, None]
return position_ids, attention_mask
def get_attentions_shape(model):
num_layers = len(model.model.layers)
num_heads = model.model.config.num_attention_heads
return num_layers, num_heads
def get_layer_attention_weights(
model,
hidden_states,
layer_index,
position_ids,
attention_mask,
attribution_start=None,
attribution_end=None,
model_type=None,
):
model_type = model_type or infer_model_type(model)
assert layer_index >= 0 and layer_index < len(model.model.layers)
layer = model.model.layers[layer_index]
self_attn = layer.self_attn
hidden_states = hidden_states[layer_index]
#print("hidden_states_shape: ", hidden_states.shape)
hidden_states = layer.input_layernorm(hidden_states)
bsz, q_len, _ = hidden_states.size()
num_attention_heads = model.model.config.num_attention_heads
num_key_value_heads = model.model.config.num_key_value_heads
head_dim = self_attn.head_dim
if model_type in ("llama", "qwen2", "qwen1.5","gemma3","glm"):
query_states = self_attn.q_proj(hidden_states)
key_states = self_attn.k_proj(hidden_states)
elif model_type in ("phi3",):
qkv = self_attn.qkv_proj(hidden_states)
query_pos = num_attention_heads * head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + num_key_value_heads * head_dim]
else:
raise ValueError(f"Unknown model: {model.name_or_path}")
query_states = query_states.view(bsz, q_len, num_attention_heads, head_dim)
query_states = query_states.transpose(1, 2)
key_states = key_states.view(bsz, q_len, num_key_value_heads, head_dim)
key_states = key_states.transpose(1, 2)
if model_type in ["gemma3"]:
query_states = self_attn.q_norm(query_states)
key_states = self_attn.k_norm(key_states)
if self_attn.is_sliding:
position_embeddings = model.model.rotary_emb_local(
hidden_states, position_ids
)
else:
position_embeddings = model.model.rotary_emb(hidden_states, position_ids)
else:
position_embeddings = model.model.rotary_emb(hidden_states, position_ids)
cos, sin = position_embeddings
apply_rotary_pos_emb, repeat_kv = get_helpers(model_type)
#query_states = query_states.to("cuda:0")
#key_states = key_states.to("cuda:0")
#cos = cos.to("cuda:0")
#sin = sin.to("cuda:0")
#print("D1", query_states.device)
#print("D2", key_states.device)
# print("D3", cos.device)
#print("D4", sin.device)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
key_states = repeat_kv(key_states, self_attn.num_key_value_groups)
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attribution_start = attribution_start if attribution_start is not None else 1
attribution_end = attribution_end if attribution_end is not None else q_len + 1
causal_mask = causal_mask[:, :, attribution_start - 1 : attribution_end - 1]
query_states = query_states[:, :, attribution_start - 1 : attribution_end - 1]
attn_weights = ch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(
head_dim
)
attn_weights = attn_weights + causal_mask
dtype = attn_weights.dtype
attn_weights = ch.softmax(attn_weights, dim=-1, dtype=ch.float32).to(dtype)
return attn_weights
def get_attention_weights(
model: Any,
hidden_states: Any,
attribution_start: Optional[int] = None,
attribution_end: Optional[int] = None,
model_type: Optional[str] = None,
) -> Any:
"""
Compute the attention weights for the given model and hidden states.
Args:
model: The model to compute the attention weights for.
hidden_states: The pre-computed hidden states.
attribution_start: The start index of the tokens we would like to attribute.
attribution_end: The end index of the tokens we would like to attribute.
model_type: The type of model to compute the attention weights for (each model
in the `transformers` library has its own specific attention implementation).
"""
with ch.no_grad():
position_ids, attention_mask = get_position_ids_and_attention_mask(
model, hidden_states
)
num_layers, num_heads = get_attentions_shape(model)
num_tokens = hidden_states[0].shape[1] + 1
attribution_start = attribution_start if attribution_start is not None else 1
attribution_end = attribution_end if attribution_end is not None else num_tokens
num_target_tokens = attribution_end - attribution_start
weights = ch.zeros(
num_layers,
num_heads,
num_target_tokens,
num_tokens - 1,
device=model.device,
dtype=model.dtype,
)
for i in range(len(model.model.layers)):
cur_weights = get_layer_attention_weights(
model,
hidden_states,
i,
position_ids,
attention_mask,
attribution_start=attribution_start,
attribution_end=attribution_end,
model_type=model_type,
)
weights[i, :, :, :] = cur_weights[0]
return weights
def get_attention_weights_one_layer(
model: Any,
hidden_states: Any,
layer_index: int,
attribution_start: Optional[int] = None,
attribution_end: Optional[int] = None,
model_type: Optional[str] = None,
) -> Any:
"""
Compute the attention weights for the given model and hidden states.
Args:
model: The model to compute the attention weights for.
hidden_states: The pre-computed hidden states.
attribution_start: The start index of the tokens we would like to attribute.
attribution_end: The end index of the tokens we would like to attribute.
model_type: The type of model to compute the attention weights for (each model
in the `transformers` library has its own specific attention implementation).
"""
with ch.no_grad():
position_ids, attention_mask = get_position_ids_and_attention_mask(
model, hidden_states
)
num_layers, num_heads = get_attentions_shape(model)
num_tokens = hidden_states[0].shape[1] + 1
attribution_start = attribution_start if attribution_start is not None else 1
attribution_end = attribution_end if attribution_end is not None else num_tokens
num_target_tokens = attribution_end - attribution_start
weights = ch.zeros(
num_layers,
num_heads,
num_target_tokens,
num_tokens - 1,
device=model.device,
dtype=model.dtype,
)
weights = get_layer_attention_weights(
model,
hidden_states,
layer_index,
position_ids,
attention_mask,
attribution_start=attribution_start,
attribution_end=attribution_end,
model_type=model_type,
)
return weights
def get_hidden_states_one_layer(
model: Any,
hidden_states: Any,
layer_index: int,
attribution_start: Optional[int] = None,
attribution_end: Optional[int] = None,
model_type: Optional[str] = None,
) -> Any:
def get_hidden_states(
model,
hidden_states,
layer_index,
position_ids,
attention_mask,
attribution_start=None,
attribution_end=None,
model_type=None,
):
model_type = model_type or infer_model_type(model)
assert layer_index >= 0 and layer_index < len(model.model.layers)
layer = model.model.layers[layer_index]
self_attn = layer.self_attn
hidden_states = hidden_states[layer_index]
#print("hidden_states_shape: ", hidden_states.shape)
hidden_states = layer.input_layernorm(hidden_states)
bsz, q_len, _ = hidden_states.size()
num_attention_heads = model.model.config.num_attention_heads
num_key_value_heads = model.model.config.num_key_value_heads
head_dim = self_attn.head_dim
if model_type in ("llama", "qwen2", "qwen1.5","gemma3","glm"):
query_states = self_attn.q_proj(hidden_states)
key_states = self_attn.k_proj(hidden_states)
elif model_type in ("phi3",):
qkv = self_attn.qkv_proj(hidden_states)
query_pos = num_attention_heads * head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + num_key_value_heads * head_dim]
else:
raise ValueError(f"Unknown model: {model.name_or_path}")
query_states = query_states.view(bsz, q_len, num_attention_heads, head_dim)
query_states = query_states.transpose(1, 2)
key_states = key_states.view(bsz, q_len, num_key_value_heads, head_dim).mean(dim=(0, 2))
return key_states
"""
Compute the attention weights for the given model and hidden states.
Args:
model: The model to compute the attention weights for.
hidden_states: The pre-computed hidden states.
attribution_start: The start index of the tokens we would like to attribute.
attribution_end: The end index of the tokens we would like to attribute.
model_type: The type of model to compute the attention weights for (each model
in the `transformers` library has its own specific attention implementation).
"""
with ch.no_grad():
position_ids, attention_mask = get_position_ids_and_attention_mask(
model, hidden_states
)
num_layers, num_heads = get_attentions_shape(model)
num_tokens = hidden_states[0].shape[1] + 1
attribution_start = attribution_start if attribution_start is not None else 1
attribution_end = attribution_end if attribution_end is not None else num_tokens
num_target_tokens = attribution_end - attribution_start
weights = ch.zeros(
num_layers,
num_heads,
num_target_tokens,
num_tokens - 1,
device=model.device,
dtype=model.dtype,
)
hidden_states = get_hidden_states(
model,
hidden_states,
layer_index,
position_ids,
attention_mask,
attribution_start=attribution_start,
attribution_end=attribution_end,
model_type=model_type,
)
return hidden_states |