Spaces:
Running
on
Zero
Running
on
Zero
from .attribute import * | |
import numpy as np | |
from src.utils import * | |
import time | |
import torch.nn.functional as F | |
import gc | |
from src.prompts import wrap_prompt_attention | |
from .attention_utils import * | |
import spaces | |
class AttnTraceAttribution(Attribution): | |
def __init__(self, llm,explanation_level = "segment",K=5, avg_k=5, q=0.4, B=30, verbose =1): | |
super().__init__(llm,explanation_level,K,verbose) | |
self.llm = llm # Use float16 for the model | |
self.model = None | |
self.model_type = llm.provider | |
self.tokenizer = llm.tokenizer | |
self.avg_k = avg_k | |
self.q = q | |
self.B = B | |
self.explanation_level = explanation_level | |
def loss_to_importance(self,losses, sentences_id_list): | |
importances = np.zeros(len(sentences_id_list)) | |
for i in range(1,len(losses)): | |
group = np.array(losses[i][0]) | |
last_group = np.array(losses[i-1][0]) | |
group_loss=np.array(losses[i][1]) | |
last_group_loss=np.array(losses[i-1][1]) | |
if len(group)-len(last_group) == 1: | |
feature_index = [item for item in group if item not in last_group] | |
#print(feature_index) | |
#print(last_group,group, last_group_label,group_label) | |
importances[feature_index[0]]+=(last_group_loss-group_loss) | |
return importances | |
def attribute(self, question: str, contexts: list, answer: str,explained_answer: str, customized_template: str = None): | |
start_time = time.time() | |
if self.llm.model!=None: | |
self.model = self.llm.model | |
else: | |
self.model = self.llm._load_model_if_needed().to("cuda") | |
self.layers = range(len(self.model.model.layers)) | |
model = self.model | |
tokenizer = self.tokenizer | |
model.eval() # Set model to evaluation mode | |
contexts = split_context(self.explanation_level, contexts) | |
previous_answer = get_previous_answer(answer, explained_answer) | |
#print("contexts: ", contexts) | |
# Get prompt and target token ids | |
prompt_part1, prompt_part2 = wrap_prompt_attention(question,customized_template) | |
prompt_part1_ids = tokenizer(prompt_part1, return_tensors="pt").input_ids.to(model.device)[0] | |
context_ids_list = [tokenizer(context, return_tensors="pt").input_ids.to(model.device)[0][1:] for context in contexts] | |
prompt_part2_ids = tokenizer(prompt_part2, return_tensors="pt").input_ids.to(model.device)[0][1:] | |
print("previous_answer: ", previous_answer) | |
print("explained_answer: ", explained_answer) | |
previous_answer_ids = tokenizer(previous_answer, return_tensors="pt").input_ids.to(model.device)[0][1:] | |
target_ids = tokenizer(explained_answer, return_tensors="pt").input_ids.to(model.device)[0][1:] | |
avg_importance_values = np.zeros(len(context_ids_list)) | |
idx_frequency = {idx: 0 for idx in range(len(context_ids_list))} | |
for t in range(self.B): | |
# Combine prompt and target tokens | |
# Randomly subsample half of the context_ids_list | |
num_samples = int(len(context_ids_list)*self.q) | |
sampled_indices = np.sort(np.random.permutation(len(context_ids_list))[:num_samples]) | |
sampled_context_ids = [context_ids_list[idx] for idx in sampled_indices] | |
input_ids = torch.cat([prompt_part1_ids] + sampled_context_ids + [prompt_part2_ids,previous_answer_ids, target_ids], dim=-1).unsqueeze(0) | |
self.context_length = sum(len(context_ids) for context_ids in sampled_context_ids) | |
self.prompt_length = len(prompt_part1_ids) + self.context_length + len(prompt_part2_ids)+len(previous_answer_ids) | |
# Directly calculate the average attention of each answer token to the context tokens to save memory | |
with torch.no_grad(): | |
outputs = model(input_ids, output_hidden_states=True) # Choose the specific layer you want to use | |
hidden_states = outputs.hidden_states | |
with torch.no_grad(): | |
avg_attentions = None # Initialize to None for accumulative average | |
for i in self.layers: | |
attentions = get_attention_weights_one_layer(model, hidden_states, i, attribution_start=self.prompt_length,model_type=self.model_type) | |
batch_mean = attentions | |
if avg_attentions is None: | |
avg_attentions = batch_mean[:, :, :, len(prompt_part1_ids):len(prompt_part1_ids) + self.context_length] | |
else: | |
avg_attentions += batch_mean[:, :, :, len(prompt_part1_ids):len(prompt_part1_ids) + self.context_length] | |
avg_attentions = (avg_attentions / (len(self.layers))).mean(dim=0).mean(dim=(0, 1)).to(torch.float16) | |
importance_values = avg_attentions.to(torch.float32).cpu().numpy() | |
# Decode tokens to readable format | |
# Calculate cumulative sums of context lengths | |
context_lengths = [len(context_ids) for context_ids in sampled_context_ids[:-1]] | |
start_positions = np.cumsum([0] + context_lengths) | |
# Calculate mean importance values for each context group | |
group_importance_values = [] | |
for start, context_ids in zip(start_positions, sampled_context_ids): | |
end = start + len(context_ids) | |
values = np.sort(importance_values[start:end]) | |
k = min(self.avg_k, end-start) # Take min of 5 and actual length | |
group_mean = np.mean(values[-k:]) # Take top k values | |
group_importance_values.append(group_mean) | |
group_importance_values = np.array(group_importance_values) | |
for idx in sampled_indices: | |
idx_frequency[idx] += 1 | |
for i, idx in enumerate(sampled_indices): | |
avg_importance_values[idx] += group_importance_values[i] | |
for i, idx in enumerate(context_ids_list): | |
if idx_frequency[i] != 0: | |
avg_importance_values[i] /= idx_frequency[i] | |
# Plot sentence importance | |
top_k_indices = np.argsort(avg_importance_values)[::-1][:self.K] | |
# Get the corresponding importance scores | |
top_k_scores = [avg_importance_values[i] for i in top_k_indices] | |
end_time = time.time() | |
gc.collect() | |
torch.cuda.empty_cache() | |
return contexts, top_k_indices, top_k_scores, end_time - start_time, None | |