Spaces:
Running
on
Zero
Running
on
Zero
from .Model import Model | |
import tiktoken | |
from transformers import AutoTokenizer | |
import time | |
import google.generativeai as genai | |
class Gemini(Model): | |
def __init__(self, config): | |
super().__init__(config) | |
api_keys = config["api_key_info"]["api_keys"] | |
api_pos = int(config["api_key_info"]["api_key_use"]) | |
assert (0 <= api_pos < len(api_keys)), "Please enter a valid API key to use" | |
self.max_output_tokens = int(config["params"]["max_output_tokens"]) | |
genai.configure(api_key=api_keys[api_pos]) | |
# Map the model name to a valid Gemini model | |
self.model = genai.GenerativeModel(self.name) | |
self.llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") | |
self.encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
self.seed = 10 | |
def query(self, msg, max_tokens=128000): | |
super().query(max_tokens) | |
while True: | |
try: | |
generation_config = genai.types.GenerationConfig( | |
temperature=self.temperature, | |
max_output_tokens=self.max_output_tokens, | |
candidate_count=1 | |
) | |
response = self.model.generate_content( | |
contents=msg, | |
generation_config=generation_config | |
) | |
# Check if response was blocked by safety filters | |
if response.candidates and response.candidates[0].finish_reason == 2: | |
blocked_filter = response.prompt_feedback.safety_ratings[0].category | |
print(f"Warning: Response was blocked by {blocked_filter} safety filter. Retrying with different prompt...") | |
continue | |
if not response.text: | |
raise ValueError("Empty response from Gemini API") | |
time.sleep(1) | |
break | |
except Exception as e: | |
print(f"Error in Gemini API call: {str(e)}") | |
time.sleep(100) | |
return response.text | |
def get_prompt_length(self,msg): | |
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
num_tokens = len(encoding.encode(msg)) | |
return num_tokens | |
def cut_context(self,msg,max_length): | |
tokens = self.encoding.encode(msg) | |
truncated_tokens = tokens[:max_length] | |
truncated_text = self.encoding.decode(truncated_tokens) | |
return truncated_text | |