Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from .Model import Model | |
import os | |
class HF_model(Model): | |
def __init__(self, config, device="cuda:0"): | |
super().__init__(config) | |
self.max_output_tokens = int(config["params"]["max_output_tokens"]) | |
api_pos = int(config["api_key_info"]["api_key_use"]) | |
hf_token = config["api_key_info"]["api_keys"][api_pos] | |
if hf_token is None or len(hf_token) == 0: | |
hf_token = os.getenv("HF_TOKEN") | |
self.tokenizer = AutoTokenizer.from_pretrained(self.name, use_auth_token=hf_token, trust_remote_code=True) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
self.name, | |
torch_dtype=torch.bfloat16, | |
device_map=device, | |
token=hf_token, | |
trust_remote_code=True | |
) | |
def query(self, msg, max_tokens=128000): | |
messages = self.messages | |
messages[1]["content"] = msg | |
text = self.tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) | |
generated_ids = self.model.generate( | |
model_inputs.input_ids, | |
max_new_tokens=self.max_output_tokens, | |
temperature=self.temperature | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
def get_prompt_length(self,msg): | |
messages = self.messages | |
messages[1]["content"] = msg | |
input_ids = self.tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(self.model.device) | |
return len(input_ids[0]) | |
def cut_context(self, msg, max_length): | |
tokens = self.tokenizer.encode(msg, add_special_tokens=True) | |
truncated_tokens = tokens[:max_length] | |
truncated_text = self.tokenizer.decode(truncated_tokens, skip_special_tokens=True) | |
return truncated_text |