# Acknowledgement: This demo code is adapted from the original Hugging Face Space "ContextCite" # (https://huggingface.co/spaces/contextcite/context-cite). import os from enum import Enum from dataclasses import dataclass from typing import Dict, List, Any, Optional import gradio as gr import numpy as np import spaces import nltk import base64 import traceback from src.utils import split_into_sentences as split_into_sentences_utils # --- AttnTrace imports (from app_full.py) --- from src.models import create_model from src.attribution import AttnTraceAttribution from src.prompts import wrap_prompt from gradio_highlightedtextbox import HighlightedTextbox from examples import run_example_1, run_example_2, run_example_3, run_example_4, run_example_5, run_example_6 from functools import partial from nltk.tokenize import sent_tokenize # Load original app constants APP_TITLE = '
AttnTrace: Attention-based Context Traceback for Long-Context LLMs
' APP_DESCRIPTION = """AttnTrace traces a model's generated statements back to specific parts of the context using attention-based traceback. Try it out with Meta-Llama-3.1-8B-Instruct here! See the [[paper](https://arxiv.org/abs/2508.03793)] and [[code](https://github.com/Wang-Yanting/AttnTrace)] for more! Maintained by the AttnTrace team.""" # NEW_TEXT = """Long-context large language models (LLMs), such as Gemini-2.5-Pro and Claude-Sonnet-4, are increasingly used to empower advanced AI systems, including retrieval-augmented generation (RAG) pipelines and autonomous agents. In these systems, an LLM receives an instruction along with a contextβ€”often consisting of texts retrieved from a knowledge database or memoryβ€”and generates a response that is contextually grounded by following the instruction. Recent studies have designed solutions to trace back to a subset of texts in the context that contributes most to the response generated by the LLM. These solutions have numerous real-world applications, including performing post-attack forensic analysis and improving the interpretability and trustworthiness of LLM outputs. While significant efforts have been made, state-of-the-art solutions such as TracLLM often lead to a high computation cost, e.g., it takes TracLLM hundreds of seconds to perform traceback for a single response-context pair. In this work, we propose {\name}, a new context traceback method based on the attention weights produced by an LLM for a prompt. To effectively utilize attention weights, we introduce two techniques designed to enhance the effectiveness of {\name}, and we provide theoretical insights for our design choice. %Moreover, we perform both theoretical analysis and empirical evaluation to demonstrate their effectiveness. # We also perform a systematic evaluation for {\name}. The results demonstrate that {\name} is more accurate and efficient than existing state-of-the-art context traceback methods. We also show {\name} can improve state-of-the-art methods in detecting prompt injection under long contexts through the attribution-before-detection paradigm. As a real-world application, we demonstrate that {\name} can effectively pinpoint injected instructions in a paper designed to manipulate LLM-generated reviews. # The code and data will be open-sourced. """ # EDIT_TEXT = "Feel free to edit!" GENERATE_CONTEXT_TOO_LONG_TEXT = ( 'Context is too long for the current model.' ) ATTRIBUTE_CONTEXT_TOO_LONG_TEXT = 'Context is too long for the current traceback method.' CONTEXT_LINES = 20 CONTEXT_MAX_LINES = 40 SELECTION_DEFAULT_TEXT = "Click on a sentence in the response to traceback!" SELECTION_DEFAULT_VALUE = [(SELECTION_DEFAULT_TEXT, None)] SOURCES_INFO = 'These are the texts that contribute most to the response.' # SOURCES_IN_CONTEXT_INFO = ( # "This shows the important sentences highlighted within their surrounding context from the text above. Colors indicate ranking: Red (1st), Orange (2nd), Golden (3rd), Yellow (4th-5th), Light (6th+)." # ) MODEL_PATHS = [ "meta-llama/Meta-Llama-3.1-8B-Instruct", ] MAX_TOKENS = { "meta-llama/Meta-Llama-3.1-8B-Instruct": 131072, } DEFAULT_MODEL_PATH = MODEL_PATHS[0] EXPLANATION_LEVELS = ["sentence", "paragraph", "text segment"] DEFAULT_EXPLANATION_LEVEL = "sentence" class WorkflowState(Enum): WAITING_TO_GENERATE = 0 WAITING_TO_SELECT = 1 READY_TO_ATTRIBUTE = 2 @dataclass class State: workflow_state: WorkflowState context: str query: str response: str start_index: int end_index: int scores: np.ndarray answer: str highlighted_context: str full_response: str explained_response_part: str last_query_used: str = "" # --- Dynamic Model and Attribution Management --- current_llm = None current_attr = None current_model_path = None current_explanation_level = None current_api_key = None current_top_k = 3 # Add top-k tracking current_B = 30 # Add B parameter tracking current_q = 0.4 # Add q parameter tracking def update_configuration(explanation_level, top_k, B, q): """Update the global configuration and reinitialize attribution if needed""" global current_explanation_level, current_top_k, current_B, current_q, current_attr, current_llm # Convert parameters to appropriate types top_k = int(top_k) B = int(B) q = float(q) # Check if configuration has changed config_changed = (current_explanation_level != explanation_level or current_top_k != top_k or current_B != B or current_q != q) if config_changed: print(f"πŸ”„ Updating configuration: explanation_level={explanation_level}, top_k={top_k}, B={B}, q={q}") current_explanation_level = explanation_level current_top_k = top_k current_B = B current_q = q # Reset both model and attribution to force complete reinitialization current_llm = None current_attr = None # Reinitialize with new configuration try: llm, attr, error_msg = initialize_model_and_attr() if llm is not None and attr is not None: return gr.update(value=f"βœ… Configuration updated: {explanation_level} level, top-{top_k}, B={B}, q={q}") else: return gr.update(value=f"❌ Error reinitializing: {error_msg}") except Exception as e: return gr.update(value=f"❌ Error updating configuration: {str(e)}") else: return gr.update(value="ℹ️ Configuration unchanged") def initialize_model_and_attr(): """Initialize model and attribution with default configuration""" global current_llm, current_attr, current_model_path, current_explanation_level, current_api_key, current_top_k, current_B, current_q try: # Check if we need to reinitialize the model need_model_update = (current_llm is None or current_model_path != DEFAULT_MODEL_PATH or current_api_key != os.getenv("HF_TOKEN")) # Check if we need to update attribution need_attr_update = (current_attr is None or current_explanation_level != (current_explanation_level or DEFAULT_EXPLANATION_LEVEL) or need_model_update) if need_model_update: print(f"Initializing model: {DEFAULT_MODEL_PATH}") effective_api_key = os.getenv("HF_TOKEN") current_llm = create_model(model_path=DEFAULT_MODEL_PATH, api_key=effective_api_key, device="cuda") current_model_path = DEFAULT_MODEL_PATH current_api_key = effective_api_key if need_attr_update: # Use current configuration or defaults explanation_level = current_explanation_level or DEFAULT_EXPLANATION_LEVEL top_k = current_top_k or 3 B = current_B or 30 q = current_q or 0.4 if "segment" in explanation_level: explanation_level = "segment" print(f"Initializing context traceback with explanation level: {explanation_level}, top_k: {top_k}, B: {B}, q: {q}") current_attr = AttnTraceAttribution( current_llm, explanation_level= explanation_level, K=top_k, q=q, B=B ) current_explanation_level = explanation_level return current_llm, current_attr, None except Exception as e: error_msg = f"Error initializing model/traceback: {str(e)}" print(error_msg) traceback.print_exc() return None, None, error_msg # Remove immediate initialization - let lazy initialization work llm, attr, error_msg = initialize_model_and_attr() # Commented out to avoid main-thread CUDA initialization # Images replaced with CSS textures and gradients - no longer needed def clear_state(): return State( workflow_state=WorkflowState.WAITING_TO_GENERATE, context="", query="", response="", start_index=0, end_index=0, scores=np.array([]), answer="", highlighted_context="", full_response="", explained_response_part="", last_query_used="" ) def load_an_example(example_loader_func, state: State): context, query = example_loader_func() # Update both UI and state state.context = context state.query = query state.workflow_state = WorkflowState.WAITING_TO_GENERATE # Clear previous results state.response = "" state.answer = "" state.full_response = "" state.explained_response_part = "" print(f"Loaded example - Context: {len(context)} chars, Query: {query[:50]}...") return ( context, # basic_context_box query, # basic_query_box state, "", # response_input_box - clear it gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible gr.update(selected=0) # basic_context_tabs - switch to first tab ) def get_max_tokens(model_path: str): return MAX_TOKENS.get(model_path, 2048) # Default fallback def get_scroll_js_code(elem_id): return f""" function scrollToElement() {{ const element = document.getElementById("{elem_id}"); element.scrollIntoView({{ behavior: "smooth", block: "nearest" }}); }} """ def basic_update(context: str, query: str, state: State): state.context = context state.query = query state.workflow_state = WorkflowState.WAITING_TO_GENERATE return ( gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible gr.update(selected=0), # basic_context_tabs - switch to first tab state, ) @spaces.GPU def generate_model_response(state: State): # Validate inputs first with debug info print(f"Validation - Context length: {len(state.context) if state.context else 0}") print(f"Validation - Query: {state.query[:50] if state.query else 'empty'}...") if not state.context or not state.context.strip(): print("❌ Validation failed: No context") return state, gr.update(value=[("❌ Please enter context before generating response! If you just changed configuration, try reloading an example.", None)], visible=True) if not state.query or not state.query.strip(): print("❌ Validation failed: No query") return state, gr.update(value=[("❌ Please enter a query before generating response! If you just changed configuration, try reloading an example.", None)], visible=True) # Initialize model and attribution with current configuration print(f"πŸ”§ Generating response with explanation_level: {current_explanation_level or DEFAULT_EXPLANATION_LEVEL}, top_k: {current_top_k or 3}") llm, attr, error_msg = initialize_model_and_attr() if llm is None or attr is None: error_text = error_msg if error_msg else "Model initialization failed!" return state, gr.update(value=[(f"❌ {error_text}", None)], visible=True) prompt = wrap_prompt(state.query, [state.context]) print(f"Generated prompt for {DEFAULT_MODEL_PATH}: {prompt[:200]}...") # Debug log # Check context length if len(prompt.split()) > get_max_tokens(DEFAULT_MODEL_PATH) - 512: return state, gr.update(value=[(GENERATE_CONTEXT_TOO_LONG_TEXT, None)], visible=True) answer = llm.query(prompt) print(f"Model response: {answer}") # Debug log state.response = answer state.answer = answer state.full_response = answer state.workflow_state = WorkflowState.WAITING_TO_SELECT return state, gr.update(visible=False) def split_into_sentences(text: str): def rule_based_split(text): sentences = [] start = 0 for i, char in enumerate(text): if char in ".?。": if i + 1 == len(text) or text[i + 1] == " ": sentences.append(text[start:i + 1].strip()) start = i + 1 if start < len(text): sentences.append(text[start:].strip()) return sentences lines = text.splitlines() sentences = [] for line in lines: #sentences.extend(sent_tokenize(line)) sentences.extend(rule_based_split(line)) separators = [] cur_start = 0 for sentence in sentences: cur_end = text.find(sentence, cur_start) separators.append(text[cur_start:cur_end]) cur_start = cur_end + len(sentence) return sentences, separators def basic_highlight_response( response: str, selected_index: int, num_sources: int = -1 ): sentences, separators = split_into_sentences(response) ht = [] if num_sources == -1: citations_text = "Traceback!" elif num_sources == 0: citations_text = "No important text!" else: citations_text = f"[{','.join(str(i) for i in range(1, num_sources + 1))}]" for i, (sentence, separator) in enumerate(zip(sentences, separators)): label = citations_text if i == selected_index else "Traceback" # Hack to ignore punctuation if len(sentence) >= 4: ht.append((separator + sentence, label)) else: ht.append((separator + sentence, None)) color_map = {"Click to cite!": "blue", citations_text: "yellow"} return gr.HighlightedText(value=ht, color_map=color_map) def basic_highlight_response_with_visibility( response: str, selected_index: int, num_sources: int = -1, visible: bool = True ): """Version of basic_highlight_response that also sets visibility""" sentences, separators = split_into_sentences(response) ht = [] if num_sources == -1: citations_text = "Traceback!" elif num_sources == 0: citations_text = "No important text!" else: citations_text = f"[{','.join(str(i) for i in range(1, num_sources + 1))}]" for i, (sentence, separator) in enumerate(zip(sentences, separators)): label = citations_text if i == selected_index else "Traceback" # Hack to ignore punctuation if len(sentence) >= 4: ht.append((separator + sentence, label)) else: ht.append((separator + sentence, None)) color_map = {"Click to cite!": "blue", citations_text: "yellow"} return gr.update(value=ht, color_map=color_map, visible=visible) def basic_update_highlighted_response(evt: gr.SelectData, state: State): response_update = basic_highlight_response(state.response, evt.index) return response_update, state def unified_response_handler(response_text: str, state: State): """Handle both LLM generation and manual input based on whether text is provided""" # Check if instruction has changed from what was used to generate current response instruction_changed = hasattr(state, 'last_query_used') and state.last_query_used != state.query # If response_text is empty, whitespace, or instruction changed, generate from LLM if not response_text or not response_text.strip() or instruction_changed: if instruction_changed: print("πŸ“ Instruction changed, generating new response from LLM...") else: print("πŸ€– Generating response from LLM...") # Validate inputs first if not state.context or not state.context.strip(): return ( state, response_text, # Keep current text box content gr.update(visible=False), # Keep response box hidden gr.update(value=[("❌ Please enter context before generating response!", None)], visible=True) ) if not state.query or not state.query.strip(): return ( state, response_text, # Keep current text box content gr.update(visible=False), # Keep response box hidden gr.update(value=[("❌ Please enter a query before generating response!", None)], visible=True) ) # Initialize model and generate response llm, attr, error_msg = initialize_model_and_attr() if llm is None: error_text = error_msg if error_msg else "Model initialization failed!" return ( state, response_text, # Keep current text box content gr.update(visible=False), # Keep response box hidden gr.update(value=[(f"❌ {error_text}", None)], visible=True) ) prompt = wrap_prompt(state.query, [state.context]) # Check context length if len(prompt.split()) > get_max_tokens(DEFAULT_MODEL_PATH) - 512: return ( state, response_text, # Keep current text box content gr.update(visible=False), # Keep response box hidden gr.update(value=[(GENERATE_CONTEXT_TOO_LONG_TEXT, None)], visible=True) ) # Generate response answer = llm.query(prompt) print(f"Generated response: {answer[:100]}...") # Update state and UI state.response = answer state.answer = answer state.full_response = answer state.last_query_used = state.query # Track which query was used for this response state.workflow_state = WorkflowState.WAITING_TO_SELECT # Create highlighted response and show it response_update = basic_highlight_response_with_visibility(state.response, -1, visible=True) return ( state, answer, # Put generated response in text box response_update, # Update clickable response content gr.update(visible=False) # Hide error box ) else: # Use provided text as manual response print("✏️ Using manual response...") manual_text = response_text.strip() # Update state with manual response state.response = manual_text state.answer = manual_text state.full_response = manual_text state.last_query_used = state.query # Track current query for this response state.workflow_state = WorkflowState.WAITING_TO_SELECT # Create highlighted response for selection response_update = basic_highlight_response_with_visibility(state.response, -1, visible=True) return ( state, manual_text, # Keep text in text box response_update, # Update clickable response content gr.update(visible=False) # Hide error box ) def get_color_by_rank(rank, total_items): """Get color based purely on rank position for better visual distinction""" if total_items == 0: return "#F0F0F0", "rgba(240, 240, 240, 0.8)" # Pure ranking-based color assignment for clear visual hierarchy if rank == 1: # Highest importance - Strong Red bg_color = "#FF4444" # Bright red rgba_color = "rgba(255, 68, 68, 0.9)" elif rank == 2: # Second highest - Orange bg_color = "#FF8C42" # Bright orange rgba_color = "rgba(255, 140, 66, 0.8)" elif rank == 3: # Third highest - Golden Yellow bg_color = "#FFD93D" # Golden yellow rgba_color = "rgba(255, 217, 61, 0.8)" elif rank <= 5: # 4th-5th - Light Yellow bg_color = "#FFF280" # Standard yellow rgba_color = "rgba(255, 242, 128, 0.7)" else: # Lower importance - Very Light Yellow bg_color = "#FFF9C4" # Very light yellow rgba_color = "rgba(255, 249, 196, 0.6)" return bg_color, rgba_color @spaces.GPU def basic_get_scores_and_sources_full_response(state: State): """Traceback the entire response instead of a selected segment""" # Use the entire response as the explained part state.explained_response_part = state.full_response # Attribution using default configuration llm, attr, error_msg = initialize_model_and_attr() if attr is None: error_text = error_msg if error_msg else "Traceback initialization failed!" return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[(f"❌ {error_text}", None)], visible=True), state, ) try: # Validate attribution inputs if not state.context or not state.context.strip(): return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[("❌ No context available for traceback!", None)], visible=True), state, ) if not state.query or not state.query.strip(): return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[("❌ No query available for traceback!", None)], visible=True), state, ) if not state.full_response or not state.full_response.strip(): return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[("❌ No response available for traceback!", None)], visible=True), state, ) print(f"start full response traceback with explanation_level: {DEFAULT_EXPLANATION_LEVEL}") print(f"context length: {len(state.context)}, query: {state.query[:100]}...") print(f"full response: {state.full_response[:100]}...") print(f"tracing entire response (length: {len(state.full_response)} chars)") texts, important_ids, importance_scores, _, _ = attr.attribute( state.query, [state.context], state.full_response, state.full_response ) print("end full response traceback") print(f"explanation_level: {DEFAULT_EXPLANATION_LEVEL}") print(f"texts count: {len(texts)} (how context was segmented)") if len(texts) > 0: print(f"sample text segments: {[text[:50] + '...' if len(text) > 50 else text for text in texts[:3]]}") print(f"important_ids: {important_ids}") print("importance_scores: ", importance_scores) if not importance_scores: return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[("❌ No traceback scores generated for full response!", None)], visible=True), state, ) state.scores = np.array(importance_scores) # Highlighted sources with ranking-based colors highlighted_text = [] sorted_indices = np.argsort(state.scores)[::-1] total_sources = len(important_ids) for rank, i in enumerate(sorted_indices): source_text = texts[important_ids[i]] _ = get_color_by_rank(rank + 1, total_sources) highlighted_text.append( ( source_text, f"rank_{rank+1}", ) ) # In-context highlights with ranking-based colors - show ALL text in_context_highlighted_text = [] ranks = {important_ids[i]: rank for rank, i in enumerate(sorted_indices)} for i in range(len(texts)): source_text = texts[i] # Skip or don't highlight segments that are only newlines or whitespace if source_text.strip() == "": # For whitespace-only segments, add them without highlighting in_context_highlighted_text.append((source_text, None)) elif i in important_ids: # Only highlight if the segment has actual content (not just newlines) if source_text.strip(): # Has non-whitespace content rank = ranks[i] + 1 # Split the segment to separate leading/trailing newlines from content # This prevents newlines from being highlighted leading_whitespace = "" trailing_whitespace = "" content = source_text # Extract leading newlines/whitespace while content and content[0] in ['\n', '\r', '\t', ' ']: leading_whitespace += content[0] content = content[1:] # Extract trailing newlines/whitespace while content and content[-1] in ['\n', '\r', '\t', ' ']: trailing_whitespace = content[-1] + trailing_whitespace content = content[:-1] # Add the parts separately: whitespace unhighlighted, content highlighted if leading_whitespace: in_context_highlighted_text.append((leading_whitespace, None)) if content: in_context_highlighted_text.append((content, f"rank_{rank}")) if trailing_whitespace: in_context_highlighted_text.append((trailing_whitespace, None)) else: # Even if marked as important, don't highlight whitespace-only segments in_context_highlighted_text.append((source_text, None)) else: # Add unhighlighted text for non-important segments in_context_highlighted_text.append((source_text, None)) # Enhanced color map with ranking-based colors color_map = {} for rank in range(len(important_ids)): _, rgba_color = get_color_by_rank(rank + 1, total_sources) color_map[f"rank_{rank+1}"] = rgba_color dummy_update = gr.update( value=f"AttnTrace_{state.response}_{state.start_index}_{state.end_index}" ) attribute_error_update = gr.update(visible=False) # Combine sources and highlighted context into a single display # Sources at the top combined_display = [] # Add sources header (no highlighting for UI elements) combined_display.append(("═══ FULL RESPONSE TRACEBACK RESULTS ═══\n", None)) combined_display.append(("These are the text segments that contribute most to the entire response:\n\n", None)) # Add sources using available data for rank, i in enumerate(sorted_indices): if i < len(important_ids): source_text = texts[important_ids[i]] # Strip leading/trailing whitespace from source text to avoid highlighting newlines clean_source_text = source_text.strip() if clean_source_text: # Only add if there's actual content # Add the source text with highlighting, then add spacing without highlighting combined_display.append((clean_source_text, f"rank_{rank+1}")) combined_display.append(("\n\n", None)) # Add separator (no highlighting for UI elements) combined_display.append(("\n" + "═"*50 + "\n", None)) combined_display.append(("FULL CONTEXT WITH HIGHLIGHTS\n", None)) combined_display.append(("Scroll down to see the complete context with important segments highlighted:\n\n", None)) # Add highlighted context using in_context_highlighted_text combined_display.extend(in_context_highlighted_text) # Use only the ranking colors (no highlighting for UI elements) enhanced_color_map = color_map.copy() combined_sources_update = HighlightedTextbox( value=combined_display, color_map=enhanced_color_map, visible=True ) # Switch to the highlighted context tab and show results basic_context_tabs_update = gr.update(selected=1) basic_sources_in_context_tab_update = gr.update(visible=True) return ( combined_sources_update, basic_context_tabs_update, basic_sources_in_context_tab_update, dummy_update, attribute_error_update, state, ) except Exception as e: traceback.print_exc() return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[(f"❌ Error: {str(e)}", None)], visible=True), state, ) def basic_get_scores_and_sources( evt: gr.SelectData, highlighted_response: List[Dict[str, str]], state: State, ): # Get the selected sentence print("highlighted_response: ", highlighted_response[evt.index]) selected_text = highlighted_response[evt.index]['token'] state.explained_response_part = selected_text # Attribution using default configuration llm, attr, error_msg = initialize_model_and_attr() if attr is None: error_text = error_msg if error_msg else "Traceback initialization failed!" return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[(f"❌ {error_text}", None)], visible=True), state, ) try: # Validate attribution inputs if not state.context or not state.context.strip(): return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[("❌ No context available for traceback!", None)], visible=True), state, ) if not state.query or not state.query.strip(): return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[("❌ No query available for traceback!", None)], visible=True), state, ) if not state.full_response or not state.full_response.strip(): return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[("❌ No response available for traceback!", None)], visible=True), state, ) print(f"start traceback with explanation_level: {DEFAULT_EXPLANATION_LEVEL}") print(f"context length: {len(state.context)}, query: {state.query[:100]}...") print(f"response: {state.full_response[:100]}...") print(f"selected part: {state.explained_response_part[:100]}...") texts, important_ids, importance_scores, _, _ = attr.attribute( state.query, [state.context], state.full_response, state.explained_response_part ) print("end traceback") print(f"explanation_level: {DEFAULT_EXPLANATION_LEVEL}") print(f"texts count: {len(texts)} (how context was segmented)") if len(texts) > 0: print(f"sample text segments: {[text[:50] + '...' if len(text) > 50 else text for text in texts[:3]]}") print(f"important_ids: {important_ids}") print("importance_scores: ", importance_scores) if not importance_scores: return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[("❌ No traceback scores generated! Try a different text segment.", None)], visible=True), state, ) state.scores = np.array(importance_scores) # Highlighted sources with ranking-based colors highlighted_text = [] sorted_indices = np.argsort(state.scores)[::-1] total_sources = len(important_ids) for rank, i in enumerate(sorted_indices): source_text = texts[important_ids[i]] _ = get_color_by_rank(rank + 1, total_sources) highlighted_text.append( ( source_text, f"rank_{rank+1}", ) ) # In-context highlights with ranking-based colors - show ALL text in_context_highlighted_text = [] ranks = {important_ids[i]: rank for rank, i in enumerate(sorted_indices)} for i in range(len(texts)): source_text = texts[i] # Skip or don't highlight segments that are only newlines or whitespace if source_text.strip() == "": # For whitespace-only segments, add them without highlighting in_context_highlighted_text.append((source_text, None)) elif i in important_ids: # Only highlight if the segment has actual content (not just newlines) if source_text.strip(): # Has non-whitespace content rank = ranks[i] + 1 # Split the segment to separate leading/trailing newlines from content # This prevents newlines from being highlighted leading_whitespace = "" trailing_whitespace = "" content = source_text # Extract leading newlines/whitespace while content and content[0] in ['\n', '\r', '\t', ' ']: leading_whitespace += content[0] content = content[1:] # Extract trailing newlines/whitespace while content and content[-1] in ['\n', '\r', '\t', ' ']: trailing_whitespace = content[-1] + trailing_whitespace content = content[:-1] # Add the parts separately: whitespace unhighlighted, content highlighted if leading_whitespace: in_context_highlighted_text.append((leading_whitespace, None)) if content: in_context_highlighted_text.append((content, f"rank_{rank}")) if trailing_whitespace: in_context_highlighted_text.append((trailing_whitespace, None)) else: # Even if marked as important, don't highlight whitespace-only segments in_context_highlighted_text.append((source_text, None)) else: # Add unhighlighted text for non-important segments in_context_highlighted_text.append((source_text, None)) # Enhanced color map with ranking-based colors color_map = {} for rank in range(len(important_ids)): _, rgba_color = get_color_by_rank(rank + 1, total_sources) color_map[f"rank_{rank+1}"] = rgba_color dummy_update = gr.update( value=f"AttnTrace_{state.response}_{state.start_index}_{state.end_index}" ) attribute_error_update = gr.update(visible=False) # Combine sources and highlighted context into a single display # Sources at the top combined_display = [] # Add sources header (no highlighting for UI elements) combined_display.append(("═══ TRACEBACK RESULTS ═══\n", None)) combined_display.append(("These are the text segments that contribute most to the response:\n\n", None)) # Add sources using available data for rank, i in enumerate(sorted_indices): if i < len(important_ids): source_text = texts[important_ids[i]] # Strip leading/trailing whitespace from source text to avoid highlighting newlines clean_source_text = source_text.strip() if clean_source_text: # Only add if there's actual content # Add the source text with highlighting, then add spacing without highlighting combined_display.append((clean_source_text, f"rank_{rank+1}")) combined_display.append(("\n\n", None)) # Add separator (no highlighting for UI elements) combined_display.append(("\n" + "═"*50 + "\n", None)) combined_display.append(("FULL CONTEXT WITH HIGHLIGHTS\n", None)) combined_display.append(("Scroll down to see the complete context with important segments highlighted:\n\n", None)) # Add highlighted context using in_context_highlighted_text combined_display.extend(in_context_highlighted_text) # Use only the ranking colors (no highlighting for UI elements) enhanced_color_map = color_map.copy() combined_sources_update = HighlightedTextbox( value=combined_display, color_map=enhanced_color_map, visible=True ) # Switch to the highlighted context tab and show results basic_context_tabs_update = gr.update(selected=1) basic_sources_in_context_tab_update = gr.update(visible=True) return ( combined_sources_update, basic_context_tabs_update, basic_sources_in_context_tab_update, dummy_update, attribute_error_update, state, ) except Exception as e: traceback.print_exc() return ( gr.update(value=[("", None)], visible=False), gr.update(selected=0), gr.update(visible=False), gr.update(value=""), gr.update(value=[(f"❌ Error: {str(e)}", None)], visible=True), state, ) def load_custom_css(): """Load CSS from external file""" try: with open("assets/app_styles.css", "r") as f: css_content = f.read() return css_content except FileNotFoundError: print("Warning: CSS file not found, using minimal CSS") return "" except Exception as e: print(f"Error loading CSS: {e}") return "" # Load CSS from external file custom_css = load_custom_css() theme = gr.themes.Citrus( text_size="lg", spacing_size="md", ) with gr.Blocks(theme=theme, css=custom_css) as demo: gr.Markdown(f"# {APP_TITLE}") gr.Markdown(APP_DESCRIPTION, elem_classes="app-description") # gr.Markdown(NEW_TEXT, elem_classes="app-description-2") gr.Markdown("""
AttnTrace is an efficient context traceback method for long contexts (e.g., full papers). It is over 15Γ— faster than the state-of-the-art context traceback method TracLLM. Compared to previous attention-based approaches, AttnTrace is more accurate, reliable, and memory-efficient. """, elem_classes="feature-highlights") # Feature highlights gr.Markdown("""
AttnTrace can be used in many real-world applications, such as tracing back to: - πŸ“„ prompt injection instructions that manipulate LLM-generated paper reviews. - πŸ’» malicious comment & code hiding in the codebase that misleads the AI coding assistant. - πŸ€– malicious instructions that mislead the action of the LLM agent. - πŸ–‹ source texts in the context from an AI summary. - πŸ” evidence that supports the LLM-generated answer for a question. - ❌ misinformation (corrupted knowledge) that manipulates LLM output for a question. - And a lot more...
""", elem_classes="feature-highlights") # Example buttons with topic-relevant images - moved here for better positioning gr.Markdown("### πŸš€ Try These Examples!", elem_classes="example-title") with gr.Row(elem_classes=["example-button-container"]): with gr.Column(scale=1): example_1_btn = gr.Button( "πŸ“„ Prompt Injection Attacks in AI Paper Review", elem_classes=["example-button", "example-paper"], elem_id="example_1_button", scale=None, size="sm" ) with gr.Column(scale=1): example_2_btn = gr.Button( "πŸ’» Malicious Comments & Code in Codebase", elem_classes=["example-button", "example-movie"], elem_id="example_2_button" ) with gr.Column(scale=1): example_3_btn = gr.Button( "πŸ€– Malicious Instructions Misleading the LLM Agent", elem_classes=["example-button", "example-code"], elem_id="example_3_button" ) with gr.Row(elem_classes=["example-button-container"]): with gr.Column(scale=1): example_4_btn = gr.Button( "πŸ–‹ Source Texts for an AI Summary", elem_classes=["example-button", "example-paper-alt"], elem_id="example_4_button" ) with gr.Column(scale=1): example_5_btn = gr.Button( "πŸ” Evidence that Support Question Answering", elem_classes=["example-button", "example-movie-alt"], elem_id="example_5_button" ) with gr.Column(scale=1): example_6_btn = gr.Button( "❌ Misinformation (Corrupted Knowledge) in Question Answering", elem_classes=["example-button", "example-code-alt"], elem_id="example_6_button" ) state = gr.State( value=clear_state() ) # Create tabs for Demo and Configuration with gr.Tabs() as main_tabs: # Demo Tab with gr.Tab("Demo", id="demo_tab"): gr.Markdown( "Enter your context and instruction below to try out AttnTrace! You can also click on the example buttons above to load pre-configured examples." ) gr.Markdown( '**Color Legend for Context Traceback (by ranking):** Red = 1st (most important) | Orange = 2nd | Golden = 3rd | Yellow = 4th-5th | Light = 6th+' ) # Top section: Wide Context box with tabs with gr.Row(): with gr.Column(scale=1): with gr.Tabs() as basic_context_tabs: with gr.TabItem("Context", id=0): basic_context_box = gr.Textbox( placeholder="Enter context...", show_label=False, value="", lines=6, max_lines=6, elem_id="basic_context_box", autoscroll=False, ) with gr.TabItem("Context with highlighted traceback results", id=1, visible=True) as basic_sources_in_context_tab: basic_sources_in_context_box = HighlightedTextbox( value=[("Click on a sentence in the response below to see highlighted traceback results here.", None)], show_legend_label=False, show_label=False, show_legend=False, interactive=False, elem_id="basic_sources_in_context_box", ) # Error messages basic_generate_error_box = HighlightedTextbox( show_legend_label=False, show_label=False, show_legend=False, visible=False, interactive=False, container=False, ) # Bottom section: Left (instruction + button + response), Right (response selection) with gr.Row(equal_height=True): # Left: Instruction + Button + Response with gr.Column(scale=1): basic_query_box = gr.Textbox( label="Instruction", placeholder="Enter an instruction...", value="", lines=3, max_lines=3, ) unified_response_button = gr.Button( "Generate/Use Response", variant="primary", size="lg" ) response_input_box = gr.Textbox( label="Response (Editable)", placeholder="Response will appear here after generation, or type your own response for traceback...", lines=8, max_lines=8, info="Leave empty and click button to generate from LLM, or type your own response to use for traceback" ) # Right: Response for attribution selection with gr.Column(scale=1): basic_response_box = gr.HighlightedText( label="Click to select text for traceback!", value=[("Click the 'Generate/Use Response' button on the left to see response text here for traceback analysis.", None)], interactive=False, combine_adjacent=False, show_label=True, show_legend=False, elem_id="basic_response_box", visible=True, ) # Button for full response traceback full_response_traceback_button = gr.Button( "πŸ” Traceback Entire Response", variant="secondary", size="sm" ) # Hidden error box and dummy elements basic_attribute_error_box = HighlightedTextbox( show_legend_label=False, show_label=False, show_legend=False, visible=False, interactive=False, container=False, ) dummy_basic_sources_box = gr.Textbox( visible=False, interactive=False, container=False ) # Configuration Tab with gr.Tab("Config", id="config_tab"): gr.Markdown("## βš™οΈ AttnTrace Configuration") gr.Markdown("Configure the traceback analysis parameters to customize how AttnTrace processes your context and generates results.") with gr.Row(): with gr.Column(scale=1): explanation_level_dropdown = gr.Dropdown( choices=["sentence", "paragraph", "text segment"], value="sentence", label="Explanation Level", info="How to segment the context for traceback analysis" ) with gr.Column(scale=1): top_k_dropdown = gr.Dropdown( choices=["3", "5", "10"], value="3", label="Top-N Value", info="Number of most important text segments to highlight" ) with gr.Row(): with gr.Column(scale=1): B_slider = gr.Slider( minimum=1, maximum=100, value=30, step=5, label="B Parameter", info="Number of subsamples (higher = more accurate but slower)" ) with gr.Column(scale=1): q_slider = gr.Slider( minimum=0.1, maximum=1.0, value=0.4, step=0.1, label="ρ Parameter", info="Sub-sampling ratio (0.1-1.0)" ) with gr.Row(): with gr.Column(scale=1): apply_config_button = gr.Button( "Apply Configuration", variant="primary", size="lg" ) with gr.Column(scale=2): config_status_text = gr.Textbox( label="Configuration Status", value="Ready to apply configuration", interactive=False, lines=2 ) gr.Markdown("### πŸ“‹ Current Configuration") gr.Markdown(""" - **Explanation Level**: Determines how the context is segmented for analysis - `sentence`: Analyze at sentence level (recommended for most cases) - `paragraph`: Analyze at paragraph level (good for longer documents) - `text segment`: Analyze at the level of 100-word text segments (ideal for non-standard document formats) - **Top-N Value**: Number of most important text segments to highlight in results - Higher values show more context but may be less focused - Lower values provide more focused results but may miss some context - **B Parameter**: Number of subsamples - Higher values (50-100): More thorough analysis but slower - Lower values (10-30): Faster analysis but may miss some important segments - Default: 30 (good balance of speed and accuracy) - **ρ Parameter**: Sub-sampling ratio (0.1-1.0) **Note**: Configuration changes will take effect immediately for new traceback operations. """) gr.Markdown("### πŸ”„ Model Information") gr.Markdown(f""" - **Current Model**: {DEFAULT_MODEL_PATH} - **Max Tokens**: {get_max_tokens(DEFAULT_MODEL_PATH):,} - **Device**: CUDA (GPU accelerated) """) # Only a single (AttnTrace) method and model in this simplified version def basic_clear_state(): state = clear_state() return ( "", # basic_context_box "", # basic_query_box "", # response_input_box gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible gr.update(selected=0), # basic_context_tabs - switch to first tab state, ) # Defining behavior of various interactions for the demo tab only def handle_demo_tab_selection(evt: gr.SelectData): """Handle tab selection - only clear state when switching to demo tab""" if evt.index == 0: # Demo tab return basic_clear_state() else: # Configuration tab - no state change needed return ( gr.update(), # basic_context_box gr.update(), # basic_query_box gr.update(), # response_input_box gr.update(), # basic_response_box gr.update(), # basic_context_tabs gr.update(), # state ) main_tabs.select( fn=handle_demo_tab_selection, inputs=[], outputs=[ basic_context_box, basic_query_box, response_input_box, basic_response_box, basic_context_tabs, state, ], ) for component in [basic_context_box, basic_query_box]: component.change( basic_update, [basic_context_box, basic_query_box, state], [ basic_response_box, basic_context_tabs, state, ], ) # Example button event handlers - now update both UI and state outputs_for_examples = [ basic_context_box, basic_query_box, state, response_input_box, basic_response_box, basic_context_tabs, ] example_1_btn.click( fn=partial(load_an_example, run_example_1), inputs=[state], outputs=outputs_for_examples ) example_2_btn.click( fn=partial(load_an_example, run_example_2), inputs=[state], outputs=outputs_for_examples ) example_3_btn.click( fn=partial(load_an_example, run_example_3), inputs=[state], outputs=outputs_for_examples ) example_4_btn.click( fn=partial(load_an_example, run_example_4), inputs=[state], outputs=outputs_for_examples ) example_5_btn.click( fn=partial(load_an_example, run_example_5), inputs=[state], outputs=outputs_for_examples ) example_6_btn.click( fn=partial(load_an_example, run_example_6), inputs=[state], outputs=outputs_for_examples ) unified_response_button.click( fn=lambda: None, inputs=[], outputs=[], js=get_scroll_js_code("basic_response_box"), ) basic_response_box.change( fn=lambda: None, inputs=[], outputs=[], js=get_scroll_js_code("basic_sources_in_context_box"), ) # Add immediate tab switch on response selection def immediate_tab_switch(): return ( gr.update(value=[("πŸ”„ Processing traceback... Please wait...", None)]), # Show progress message gr.update(selected=1), # Switch to annotation tab immediately ) basic_response_box.select( fn=immediate_tab_switch, inputs=[], outputs=[basic_sources_in_context_box, basic_context_tabs], queue=False, # Execute immediately without queue ) basic_response_box.select( fn=basic_get_scores_and_sources, inputs=[basic_response_box, state], outputs=[ basic_sources_in_context_box, basic_context_tabs, basic_sources_in_context_tab, dummy_basic_sources_box, basic_attribute_error_box, state, ], show_progress="full", ) basic_response_box.select( fn=basic_update_highlighted_response, inputs=[state], outputs=[basic_response_box, state], ) # Full response traceback button full_response_traceback_button.click( fn=immediate_tab_switch, inputs=[], outputs=[basic_sources_in_context_box, basic_context_tabs], queue=False, # Execute immediately without queue ) full_response_traceback_button.click( fn=basic_get_scores_and_sources_full_response, inputs=[state], outputs=[ basic_sources_in_context_box, basic_context_tabs, basic_sources_in_context_tab, dummy_basic_sources_box, basic_attribute_error_box, state, ], show_progress="full", ) dummy_basic_sources_box.change( fn=lambda: None, inputs=[], outputs=[], js=get_scroll_js_code("basic_sources_in_context_box"), ) # Unified response handler unified_response_button.click( fn=unified_response_handler, inputs=[response_input_box, state], outputs=[state, response_input_box, basic_response_box, basic_generate_error_box] ) # Configuration update handler apply_config_button.click( fn=update_configuration, inputs=[explanation_level_dropdown, top_k_dropdown, B_slider, q_slider], outputs=[config_status_text] ) # gr.Markdown( # "Please do not interact with elements while generation/attribution is in progress. This may cause errors. You can refresh the page if you run into issues because of this." # ) demo.launch(show_api=False, share=True)