from src.prompts import wrap_prompt_self_citation from src.utils import * import time from src.models import create_model from .attribute import * import copy class SelfCitationAttribution(Attribution): def __init__(self, llm, explanation_level,K=5,self_citation_model = "self",verbose = 1): super().__init__(llm,explanation_level,K,verbose) if "gpt" not in llm.name: self.model = llm.model self.tokenizer = llm.tokenizer else: self.model = llm if self_citation_model == "self": self.explainer = self.llm else: self.explainer = create_model(f'model_configs/{self.self_citation_model}_config.json') def attribute(self, question:str, contexts:list, answer:str): def remove_numbered_patterns(input_string): # Define the pattern to be removed, where \d+ matches one or more digits pattern = r'\[\d+\]' # Use re.sub() to replace all occurrences of the pattern with an empty string result = re.sub(pattern, '', input_string) result = result.replace('\n', '') return result def extract_numbers_in_order(input_string): # Define the pattern to match numbers within square brackets pattern = r'\[(\d+)\]' # Use re.findall() to find all occurrences of the pattern and extract the numbers numbers = re.findall(pattern, input_string) # Convert the list of strings to a list of integers numbers = [int(num) for num in numbers] return numbers """ Given question, contexts and answer, return attribution results """ start_time = time.time() texts = split_context(self.explanation_level,contexts) citation_texts = copy.deepcopy(texts) for i,sentence in enumerate(citation_texts): #clean up existing numbered patterns sentence = remove_numbered_patterns(sentence) citation_texts[i]=f"[{str(i)}]: "+sentence prompt = wrap_prompt_self_citation(question, citation_texts,answer) start_time = time.time() self_citation = self.explainer.query(prompt) end_time = time.time() print("Self Citation: ", self_citation) important_ids = extract_numbers_in_order(self_citation) important_ids = [i for i in important_ids if i < len(citation_texts)] print("Important ids: ", important_ids) importance_scores = list(range(len(important_ids), 0, -1)) return texts,important_ids, importance_scores, end_time-start_time,None