import torch from transformers import AutoTokenizer, AutoModelForCausalLM from .Model import Model import os class HF_model(Model): def __init__(self, config, device="cuda:0"): super().__init__(config) self.max_output_tokens = int(config["params"]["max_output_tokens"]) api_pos = int(config["api_key_info"]["api_key_use"]) hf_token = config["api_key_info"]["api_keys"][api_pos] if hf_token is None or len(hf_token) == 0: hf_token = os.getenv("HF_TOKEN") self.tokenizer = AutoTokenizer.from_pretrained(self.name, use_auth_token=hf_token, trust_remote_code=True) self.model = AutoModelForCausalLM.from_pretrained( self.name, torch_dtype=torch.bfloat16, device_map=device, token=hf_token, trust_remote_code=True ) def query(self, msg, max_tokens=128000): messages = self.messages messages[1]["content"] = msg text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) generated_ids = self.model.generate( model_inputs.input_ids, max_new_tokens=self.max_output_tokens, temperature=self.temperature ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response def get_prompt_length(self,msg): messages = self.messages messages[1]["content"] = msg input_ids = self.tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(self.model.device) return len(input_ids[0]) def cut_context(self, msg, max_length): tokens = self.tokenizer.encode(msg, add_special_tokens=True) truncated_tokens = tokens[:max_length] truncated_text = self.tokenizer.decode(truncated_tokens, skip_special_tokens=True) return truncated_text